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ABSTRACT

This paper describes a new low bit-rate formant vocoder.

The formant parameters are represented by Gaussian mix-
ture distributions, which are estimated from the discrete
Fourier transform (DFT) magnitude spectrum of the speech
signal [12]. A voiced/unvoiced classification mechanism has
been developed based on the harmonic nature of each for-
mant in the DFT spectrum modulated by the Gaussian
Mixture distribution. Using a magnitude-only sinusoidal
synthesiser [8], intelligible synthetic speech has been ob-
tained. Vector quantisation [3] of the vocal tract parame-
ters enables this formant vocoder to operate at a bit-rate
of 1248 bps.

1. INTRODUCTION

Most methods for analysing and synthesising speech are
based on a parametric description of the short-time spec-
trum or an eguivalent representation of the speech signal.
In this paper a new parametrisation method is used in a
speech analysis/synthesis process in order to develop a for-
mant vocoder. In the past, formant based speech coders
have been shown to work at very low bit rates [4, 11], as
the spectral content of speech can be represented by only
three or four formants.

Formants characterise many speech sounds and represent
the resonances of the vocal tract. Identification of formants
depends on several factors, for example, the method used to
obtain the smoothed magnitude function, the relative am-
plitudes and frequencies of the resonances, the method used
to pick the peaks and the parameters used for processing
the speech signal. Model based techniques such as Linear
Prediction analysis are used in order to extract formants
but problems such as spurious peaks exist.

The magnitude of the discrete Fourier transform (DFT)
directly contains the formant information and can serve as
a basis for formant analysis of speech. A formant extraction
technique has been developed whereby the short-time mag-
nitude spectrum is modelled by probability density func-
tions represented by mixtures of Gaussians [12]. The EM
(Expectation Maximisation) algorithm [2] is used to per-
form the parameter estimation process.

This mixtures of Gaussians based technique has been in-
tegrated into a low bit-rate vocoder system, as shown in
Figure 1, whereby the probability density function (pdf) pa-
rameters are encoded and decoded. Sinusoidal coders have
produced good quality synthesised speech and as a closer
match to the analysis procedure, the magnitude-only sinu-
soidal synthesis model allows the reconstruction of speech
from Gaussian mixture parameters.
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Figure 1. Diagram of Formant Vocoder Structure.

The rest of the paper is formalised as follows. First
the mixtures of Gaussians based formant analysis tech-
nique is reviewed, followed by a description of the developed
voiced/unvoiced classification and pitch detection mecha-
nism. The vector quantisation (VQ) process and codebook
generation methods are then summarised. Finally the syn-
thesis system is described and results from analysis and
synthesis of speech using this vocoder are presented.

2. FORMANT ANALYSIS USING GAUSSIAN
MIXTURES

A new formant analysis technique using Gaussian mixtures
to depict the short time spectral structure of speech has
been developed. The EM algorithm for finding the maxi-
mum likelihood of a mixture model is used to perform the
parameter estimation process. The means, variances and
mixture weights of the probability density functions repre-
sent the formant frequencies, bandwidths and amplitudes
respectively. Figure 2 shows an estimated mixture distribu-
tion of four Gaussians superimposed over the DFT magni-
tude spectrum that is obtained by analysis of a short seg-
ment of speech.
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Figure 2. A mixture of Gaussians fit (pdf) to a DFT magnitude
spectrum.
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Figure 3. Plots of Gaussian mixtures (pdf) superimposed on

two cepstrally smoothed spectrums, where a) is for a voiced
segment and (b) is an unvoiced section of speech.

As can be seen, the spectral shape has been well repre-
sented and the formants within the frequency range have
been picked by each of the Gaussians in the mixture. In or-
der to attempt to better fit the mixture distributions to the
DFT magnitude spectra the effect of varying several factors
was investigated based on simple models of speech percep-
tion. Cepstral smoothing [1] of the the magnitude spectra
has produced the best formant parameters when compared
to the original speech signal. An example of this is shown
in Figure 3. A spectrogram of the sentence “we were away
a year ago” is shown in Figure 5, which also illustrates a
spectrogram representation of the Gaussian mixtures per
frame. The fits were obtained after the application of cep-
stral smoothing to magnitude spectra. The latter clearly
shows the formant tracks obtained using this analysis tech-
nique.

3. PITCH & VOICING DETERMINATION

In order to complete a speech analysis/synthesis system,
pitch estimation and voicing classification are required. In
the systems developed, pitch detection was performed using
the cepstrum method as described in [9, 10]. This method
requires the computation of the cepstrum for a short seg-
ment of speech which is then searched for the peak cepstral
value and its location. The pitch period is the location of
the peak between fixed thresholds.
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Figure 4. Plots of (a) voiced formant and (b) unvoiced formant
for zero-crossing calculations.

An algorithm for voiced/unvoiced classification per for-
mant has been developed. This makes use of the harmonic
nature of formants to decide on voicing. In Figure 2 note
that the formants are modulated by the Gaussian distribu-
tion. Figure 4 shows the difference between the spectrum
of the formants and the Gaussian distribution for a voiced
and an unvoiced segment of speech. These show that a
correlation exists between the number of zero-crossings per
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Figure 5. Figure (a) shows the spectrogram of the original
speech, (b) represents the estimated probability density func-
tions spectrogram using mixtures of Gaussians and (c) shows
formant synthesised speech for the same utterance using the
Klatt synthesiser.

formant and the classification of voicing. As the pitch is
known, the actual number of zero-crossings within the for-
mant can be compared with the number calculated, and
this can serve as the basis for a voiced/unvoiced decision
per formant. This method has been found to be successful
and easy to implement.

4. VECTOR QUANTISATION

Standard vector quantisation was utilised in this vocoder.
Three codebooks were trained each of dimensionality four
(one dimension per Gaussian). Separate codebooks were
trained for the mean, standard deviation and mixture
weight parameter vectors. The means and mixture weights
were transformed to the log domain before quantisation,
and similarly the standard deviation was represented as a
fraction of the mean. Table 1 shows these spectral parame-
ter vector conversions for construction of the training data.

The VQ codebooks were built from training data com-
prising of frames of formant analysed natural speech of 58

16800

6800
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different speakers lasting approximately 43 minutes. Each
codebook was trained using the LBG algorithm [6].
Acoustic analysis was done at a fixed frame rate of
32 msec resulting in a bit rate of 1248 bps.
For simplicity each frame was coded independently of ad-
jacent frames, and relaxing this constraint is expected to
lead to lower bit-rates.

Parameter Representation Bit
Type Allocation

4 x Mean Loganthm 10

4 x Std Deviation | Fraction of Mean 7
4 x Weight Logarithm 10

4 x Voicing - 4
Pitch Reciprical 8

[ Total bits per Segment 39 ]

Table 1. Conversion of Parameters and Bit Allocation

5. THE SYNTHESIS SYSTEMS

In the initial phase of the vocoder design the Klatt synthe-
siser [5] was used for formant synthesis. In order to drive
this synthesiser, the pdf parameters (means, variances and
mixture weights) were converted to formant parameters.
Despite the shape of a normal distribution not being di-
rectly related to the second order filters commonly used
in formant synthesisers, results from the Klatt synthesiser
have yielded intelligible synthetic speech, although a large
number of parameters are required. Figure 5(c) shows an
example utterance synthesised using the Klatt synthesiser.

Sinusoidal modelling enables the reconstruction of the
time waveform from the parametrised speech as a closer
match to the analysis procedure described.

5.1. The Sinusoidal Synthesis Model
McAulay described a sinusoidal model for the speech wave-
form [7], for which the phase is defined as the integral of
the instantaneous frequencies of the component sine waves.
From classical speech perception the assumption can be
made that the ear is sensitive principally to the short-time
spectral magnitude and not the phase, provided that phase
continuity is maintained.

The speech waveform can be modelled as a sum of sine
waves. If s(n) represents the sampled speech waveform then

s(n) = Z Aq(n) sin[gi(n)] (1)

where A;(n) are the amplitudes and ¢;(n) is the time-
varying phase of the i'th partial. The phase is taken to
be the integral of the instantaneous frequency fi(n) and
thus can be shown to satisfy the recursion

¢i(n) = di(n — 1) +27nfi(n)/fs ()

where f, is the sampling frequency. As the pitch is known
the partials are harmonically related by

filn) =i+ fo(n) 3)

where fo(n) is the fundamental frequency at time n. As
a consequence of the definition of phase in terms of the
instantaneous frequency, waveform continuity is obtained.
Each frequency and amplitude of the constituent sinusoids
was linearly interpolated on a sample by sample basis. This
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Figure 6. Spectrogram of the original utterance “She had
your dark suit in greasy wash water all year” .
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Figure 7. Spectrogram derived by the magnitude-only syn-
thesis technique for the same utterance as that of Figure 6.
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Figure 8. Spectrogram derived by quantising the parame-
ters.

results in considerably better partial tracks as shown in Fig-
ure 7 with original speech shown in Figure 6 (audio file is
provided). Note that the reconstructed phase function is
not the same as the original speech waveform but this is
perceptually toned down provided that the magnitude spec-
trum has been successfully reconstructed.

The simplest waveform reconstruction method, the
overlap-add method, was also tested. Using a triangular
window enables the amplitudes and the frequencies to be
linearly interpolated across frame boundaries resulted in
intelligible synthetic speech but discontinuities occurred on
some sinusoids across frame boundaries.

6. SYSTEM EVALUATION

Figure 8 shows a spectrogram of utterance “She had your
dark suit in greasy wash water all year” after quantisation
of the spectral parameters. An example of female speech
is shown in Figures 9 and 10. Note that none of the spec-
tral parameters from these sentences were in the codebook
training data.
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In informal intelligibility tests, 5 sentences after quan-
tisation of the parameters were presented to listeners, all
of whom found all this speech intelligible, although some
requested a second hearing as the sentences had specialist
vocabulary out of context.

Spectrogram from magnitude-only synthesis

Figure 10.
technique after quantisation of the parameters.

7. CONCLUSIONS & FURTHER WORK

The results presented here have further developed the effec-
tiveness of mixtures of Gaussians in speech synthesis and
analysis. A formant vocoder has been developed using a
simple vector quantiser to encode the spectral parameters.
An operating bit-rate of 1248 bps was obtained.

With comparison to other methods of analysis, the Gaus-
sian means as well as the variances between frame bound-
aries slowly vary in time and this fact will be employed
in designing a better coding mechanism such as segmental
coding, for operation at even lower bit-rates.

In the sinusoidal synthesis model the phase was defined
in terms of the instantaneous frequency, hence reconstruc-
tion depends only on the amplitudes and frequencies of the
component tones. This model still requires modifications
in order to better model the formant structure represented
by the mixtures of Gaussians. At the moment there is a
suspected mismatch between the gain of the spectrum and
the Gaussian mixture distribution. This results in less reso-
nant formant frequencies reducing the quality of synthesised
speech.
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An advantage to this technique in comparison to linear
prediction analysis is that the number of parameters is in-
dependent of the sample rate. In linear prediction the pa-
rameters tend to increase with higher sampling rates. This
would allow better modelling of speech with lower number
of parameters.
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