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ABSTRACT

Understanding the human ability to reliably process and
decode speech across a wide range of acoustic conditions
and speaker characteristics is a fundamental challenge for
current theories of speech perception. Conventional speech
representations such as the sound spectrogram emphasize
many spectro-temporal details that are not directly ger-
mane to the linguistic information encoded in the speech
signal and which consequently do not display the perceptual
stability characteristic of human listeners. We propose a
new representational format, the modulation spectrogram,
that discards much of the spectro-temporal detail in the
speech signal and instead focuses on the underlying, stable
structure incorporated in the low-frequency portion of the
modulation spectrum distributed across critical-band-like
channels. We describe the representation and illustrate its
stability with color-mapped displays and with results from
automatic speech recognition experiments.

1. INTRODUCTION

Human listeners are able to reliably decode phonetic infor-
mation carried by the speech signal across a wide range
of acoustic conditions and speaker characteristics. This
perceptual stability is not captured by traditional repre-
sentations of speech which tend to emphasize the minute
spectro-temporal details of the speech signal. Speaker vari-
ability and distortions such as spectral shaping, background
noise, and reverberation that typically exert little or no in-
fluence on the inteiligibility of speech drastically alter such
conventional speech representations as the sound spectro-
gram. This disparity between perceptual stability and rep-
resentational lability constitutes a fundamental challenge
for models of speech perception and recognition. A speech
representation insensitive to speaker variability and acous-
tic distortion would be a powerful tool for the study of hu-
man speech perception and for research in speech coding
and automatic speech recognition.

A key step for representing speech in a stable fashion is to
focus on the elements of the signal encoding phonetic infor-
mation. By suppressing phonetically irrelevant elements of
the signal, the variability of the representation is reduced.
There is significant evidence that much of the phonetic
information is encoded by slow changes in gross spectral
structure that characterize the low-frequency portion of the
modulation spectrum of speech. In the late 1930°s the de-
velopers of the vocoder found that it was possible to synthe-
size intelligible, high-quality speech based on a ten-channel
spectral estimate with roughly 300-Hz resolution that was
low-pass filtered at 25 Hz [1]. More recently, in a study on
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the intelligibility of temporally-smeared speech, Drullman
and colleagues have demonstrated that modulations at rates
above 16 Hz are not required for speech intelligibility [2]. A
representation that focuses on slow modulations in speech
also has compelling parallels to the dynamics of speech pro-
duction, in which the articulators move at rates of 2-12 Hz
[3], and to the sensitivity of auditory cortical neurons to
amplitude-modulations at rates below 20 Hz [4].

2. THE MODULATION SPECTROGRAM

We have developed a new representational format for
speech, the modulation spectrogram, that displays and en-
codes the signal in terms of the distribution of slow modula-
tions across time and frequency. Although not intended as
an auditory model, the representation captures many im-
portant properties of the auditory cortical representation
of speech. The modulation spectrogram represents modu-
lation frequencies in the speech signal between 0 and 8 Hz,
with a peak sensitivity at 4 Hz, corresponding closely to the
long-term modulation spectrum of speech. The modulation
spectrogram is computed in critical-band-wide channels [5]
to match the frequency resolution of the auditory system,
incorporates a simple automatic gain control and empha-
sizes spectro-temporal peaks.

Figure 1 illustrates the signal processing procedure used
to produce the modulation spectrogram. Incoming speech,
sampled at 8 kHz, is analyzed into approximately critical-
band-wide channels via an FIR filter bank. The filiers are
trapezoidal in shape, and there is minimal overlap between
adjacent channels. Within each channel the signal envelope
is derived by half-wave rectification and low-pass filtering
(the half-power cutoff frequency is 28 Hz). Each channel
envelope signal is downsampled to 80 Hz and then normal-
ized by the average envelope level in that channel measured
over the entire utterance. The modulations of the normal-
ized envelope signals are analyzed by computing the FFT
over a 250-ms Hamming window every 12.5 ms in order to
capture the dynamic properties of the signal. Finally, the
squared magnitudes of the 4-Hz coefficients of the FFTs are
plotted in spectrographic format, with log energy encoded
by color. Note that the display portrays modulation energy
from 0-8 Hz. The effective filter response for the 4 Hz com-
ponent is down by 10 dB at 0 and 8 Hz. A threshold is used
in the energy-to-color mapping: the peak 30 dB of the sig-
nal is mapped to a color axis, while levels more than 30 dB
below the global peak are mapped to the color for -30 dB.
Bilinear smoothing is used to produce the final image.

3. REPRESENTATIONAL STABILITY

The modulation spectrographic representation of speech is
more stable than the conventional spectrographic represen-
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Figure 1. Diagram of the processing currently used to produce modulation spectrograms

tation in low signal-to-noise ratio (SNR) and reverberant
conditions. Several processing steps contribute to this sta-
bility. The emphasis of modulations in the range of 0-8 Hz
with peak sensitivity at 4 Hz acts as a matched filter that
passes only signals with temporal dynamics characteristic
of speech. The critical-band-like frequency resolution of
the representation expands the representation of the low-
frequency, high-energy portions of the speech signal, while
the thresholding used in the color mapping emphasizes the
spectro-temporal peaks in the speech signal that rise above
the noise floor.

Figure 2 illustrates the stability of the modulation spec-
trographic representation of speech by comparing conven-
tional narrow-band spectrograms'! and modulation spectro-
grams for clean and noisy versions of the utterance “Tell me
about the Thai barbecue.” The noisy sample was produced
by mixing the clean sample with pink noise at a SNR of
0 dB. Both the modulation spectrograms and narrow-band
spectrograms cover approximately the same range of fre-
quencies. However, the modulation spectrogram frequency
axis is nonlinear in accordance with the human spatial fre-
quency coordinates described in [5].

While the narrow-band spectrogram of the clean speech
sample clearly portrays features of the speech signal such as
onsets, formant trajectories, and harmonic structure, these
features are all but lost in the narrow-band spectrogram
of the noisy speech, where only a few spectro-temporal
peaks stand out above the noise. In contrast to the spec-
trographic representation, the modulation spectrogram of
the clean speech provides only a coarse picture of the en-
ergy distribution in time and frequency. The fine details,
such as harmonicity, are not preserved. A comparison of
the modulation spectrograms for the clean and noisy speech
samples illustrates the stability of the representation. The
major features of the modulation spectrogram observed for
clean speech are preserved in the modulation spectrogram
for speech embedded in intense levels of noise.

1The narrow-band spectrograms were computed by pre-
emphasizing the speech, sampled at 8 kHz, with the filter
H(z) =1-0.97z71, then performing 512-point FFTs with a 64-
ms Hamming window and a 16-ms window step. A lower thresh-
old of -30 dB was applied in the energy-to-color mapping.
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4. AUTOMATIC RECOGNITION BASED ON
MODULATION SPECTROGRAPHIC
FEATURES

A similar representational stability is observed for reverber-
ant speech, and has been demonstrated in tests with an au-
tomatic speech recognition system. In these tests, the per-
formance of a hybrid hidden Markov model/multilayer per-
ceptron (HMM/MLP) recognizer trained on clean speech
is measured on clean and reverberant speech. The perfor-
mance of recognizers using different front-end feature ex-
traction methods is compared on the two test sets. Aside
from the front-end processing, the recognizers are identical,
using similarly-sized MLPs for phonetic probability estima-
tion, and the same HMM word models and class bigram
grammar for speech decoding. Further details on the recog-
nition experiments are provided in [6].

Table 1 compares the performance of a recognizer using
features based on the modulation spectrogram® with the
performance of a recognizer that uses PLP features [7].

5. THE IMPORTANCE OF THE SYLLABLE
IN SPEECH RECOGNITION

A central problem in speech science is the explication of
the process by which the brain is able to go from sound
to meaning. The traditional models posit a complex and
somewhat arbitrary series of operations that advance from
the acoustic signal to phonemic units, from phonemic units
to words, and from words to meaning through a langunage’s
grammar. However, even a cursory examination of the sta-
tistical properties of speech indicates that the relationship
between sound and symbol is anything but arbitrary. In-
stead, it appears that speech is organized into syllable-like
units at both the acoustic and lexical levels, and that these

2The features are computed in quarter-octave bands, the
modulation transfer function of the system is flat between O
and 8 Hz, and no thresholding is applied to the output. The
most important difference between these features is the absence
of thresholding. If thresholding is used for automatic recognition,
the recognition performance on clean speech degrades. However,
the stability of the representational format is enhanced by some
degree of thresholding.

1648



clean speech: modulation spectrogram

Frequency (Hz)
[o2]
3

0 02 0.4 06 08 T
Time (s)

0 dB SNR speech: modulation spectrogram

pry
o2}
2]
(=3

Frequency (Hz)
[o:]
8

0 0.2 0.4 086 08 1
Time (s)
clean speech: narrowband spectrogram

— =

N
< S
g 2000, o
z i
o
L 1000

o

0 0.2 0.4 0.6
Time (s)

noisy speech: narrowband spectrogram

Frequency (Hz)

0 . 0.2 04 0.6 08 1 1.2
Time (s)

These patterns are far more clearly delineated in the original color versions, which are available in the CD-ROM version of
the proceedings and at http://vww.icsi.berkeley.edu/ bedk/ICASSP97_fig2_color.gif

Figure 2. A comparison of the modulation spectrogram and narrow-band spectrogram for clean and noisy
speech.
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syllable-like units are the basis for lexical access from the
acoustics of the speech signal.

It has been previously suggested that the broad peak at
4 Hz in the modulation spectrum corresponds to the aver-
age syllable rate [8]. Recently, we have found a more specific
correlation between the distribution of low-frequency mod-
ulations in speech and the statistical distribution of syl-
lable durations in spoken discourse {9]. It has also been
shown that the concentrations of energy in the modulation
spectrographic display correspond to syllabic nuclei. Thus,
it appears that the modulation spectrogram robustly ex-
tracts information pertairing to the syllabic segmentation
of speech, and that this information is of some utility in
recognizing speech under adverse acoustic conditions [10].

Two common objections to a syllabic representation of
English are the relatively complex and heterogeneous sylla-
ble structure of English and the large number of syllables
required to cover the lexical inventory. However, these the-
oretical concerns are not borne out in practice. In spoken
English, over 80% of the syllables are of the canonical CV,
CVC, VC, and V forms, and many of the remainder reduce
to these formats by processes of assimilation and reduction.
In written English, only 12 syllables comprise over 25% of
all syllable occurrences, and 339 syllables account for 75%
of all syllable occurrences [11]. Spoken English employs a
similarly reduced syllabic inventory [12, 13].

The robust encoding of syllabic structure by low-
frequency modulations in speech, the sensitivity of the hu-
man auditory system to these modulations, and the statis-
tics demonstrating that, in practice, English has a relatively
simple syllabic structure and relies on a small subset of the
possible syllables all support a model of real-time human
speech perception in which auditory mechanisms parse the
speech signal into syllable-like urnits and a core vocabulary
of a few hundred, highly familiar syllables support efficient
lexi]ca.l access. This model is described in more detail in
[14).

6. CONCLUSIONS

We have developed a new representational format for speech
that captures many important properties of the auditory
cortical representation of speech, namely selectivity for the
slow modulations in the signal that encode phonetic in-
formation, critical-band frequency analysis, automatic gain
control, and sensitivity to spectro-temporal peaks in the
signal. These signal processing strategies produce a repre-
sentation with greater stability in low SNR and reverberant
conditions than conventional speech representations. The
enhanced stability of the modulation spectrogram provides
a potentially useful tool for research in human speech per-
ception, speech coding, and automatic speech recognition.
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