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ABSTRACT

In the quantization of a signal in speech coding, depen-
dencies between its samples are often neglected. Generally,
these dependencies are then also neglected at the decoder.
However, usually a priori information about these depen-
dencies is available, making it possible to improve decoder
performance by means of enhanced decoding. An attrac-
tive feature of enhanced decoding is that it can be applied
to existing coding standards. This paper describes several
enhanced decoding methods, including a vector decoding
method and a method which aims at reducing the differ-
ential entropy rate of the decoded signal. Experimental
results are used to confirm that both these decoding pro-
cedures can provide better performance than conventional
decoding for common signal/encoder combinations.

1 INTRODUCTION

The quantizers in speech coders operate on scalar or vec-
tor signals. We define as a sample the finite sequence of
vectors or scalars which is quantized in one quantization
operation (this sequence may contain only one scalar or
vector). Quantizers often operate on each sample indepen-
dently of the other samples. Inherently, coding efficiency is
lost in such an encoding process. This loss in coding effi-
ciency is particularly strong when the unquantized samples
are highly dependent, i.e., when the signal has a high level
of redundancy. The losses in efficiency are often the result
of practical constraints on computational complexity, delay,
robustness to channel errors, and compatibility with older
standards.

It is natural to create a decoder which reflects the de-
sign of the encoder. That is, the decoder considers only one
sample at a time. However, as will be shown in this paper,
particularly when there is a high level of redundancy in the
encoded signal which is not exploited during encoding, it
may be possible to exploit such dependencies at the decoder.
Sufficient a priort information concerning the dependencies
is often known to enhance the output significantly. Fur-
thermore, the forementioned complexity, robustness, and
compatibility constraints often do not apply to the decoder.
Thus, enhanced decoding procedures which exploit sample
dependencies are of practical significance.

An obvious application of enhanced decoding is the com-
bination of a relatively coarse scalar quantizer and a signal
which is generally smooth, but which may include regions
of rapid change. This situation is typical for coded speech
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parameters such as the line spectral frequencies, the speech
signal power, and the pitch period.

This paper has the following outline. Section 2 provides
a description of three decoding aproaches: vector decoding,
set-theoretic estimation, and constrained optimization. It
also contains a few experimental results for the vector de-
coding procedure. Section 3 then goes into more detail on
a particular constrained optimization procedure, which is
referred to as minimum-entropy decoding. Conclusions are
provided in section 4.

2 METHODS FOR DECODING

A quantization index i received at the decoder indicates
in which quantizer cell (Voronoi region) the original sam-
ple value is located. The requirement that the decoded
value should fall within this Voronoi region will be called
the quantization consistency constraint. In most decoders
this constraint is satisfied. Usually the decoded value is
the optimal decoded value (or an approximation thereof),
given the quantization index i, in the least squares sense.
If Q5. (-) denotes this optimal decoder, then [1]

opt

Qope(3) = Els]], (1)

where E[s|?] is the expectation value of the original sample
s given that the quantization index is i. Obviously, this
single-sample decoding method does not account for a pri-
ori information about sample dependencies which might be
available to the decoder. In the following subsections three
different approaches to the consideration of sample depen-
dencies are described.

2.1 Vector decoding

The vector decoding method is a straightforward general-
ization of the above procedure, where the decoder now uses
simultaneously multiple quantization indices. Despite its
conceptual simplicity, the method does not appear to be in
use. Let s =[s(0),s(1), -, s(N — 1)] denote a sequence of
N samples and let i = [i(—g),1(—g + 1),--+,3(N — 1+ ¢)]
(g > 0) denote a sequence of N + 2¢ quantization indices.
The integer ¢ represents the length of the “overhang” of the
index sequence beyond the interval of the sample sequence.
The optimal decoder for this generalized case is

Qopi (i) = E[sli]. (2)

An asymptotically optimal decoder @~'(:) can be ob-
tained by means of averaging over an appropriately col-
lected, large data base with data vectors si (the index k
identifies the vector within the data base). Let A(i) de-
note the set of data vectors sy with quantization vector i:
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A(1) = {ss : Q(sx) =i} and let |JA(1)|| denote the number
of entries in the set A(i). Then, a good decoder is

—1ey _ 1 s
CO=mE L @

s, ea(l)

An apparent weakness of vector decoding is the remain-
ing division of the sampled signal into consecutive sequences
and the resulting loss in performance at the boundaries of
these sequences. However, this is only the case for ¢ = 0. By
choosing ¢ sufficiently large (¢.e., by including indices corre-
sponding to samples beyond the sequence itself), boundary
effects are removed. Note that the case where the decoded
sequence contains only one sample (N = 1) can also provide
enhanced decoding for ¢ > 0.

) 10 20 30 40 50
time (me)
Figure 1. Top to bottom: the original signal,
output of scalar 3-bit u-law encoder with scalar decoder,
output of the same encoder and 4-sample vector decoder.

A more serious drawback of vector decoding is the storage
requirement for the codebook. The codebook size increases
exponentially with the number of samples in the index se-
quence, restricting the length of the sequences. For a bit
rate of r bits per sample, the codebook size is 27N +29) Tt
may be possible to reduce the codebook size by only storing
common vectors and use scalar decoding for rare vectors.

Vector decoding should be useful in practical applications
with low bit allocations per sample. Obviously, the method
works particularly well for signals which are of restricted
structure (e.g., DTMF tones). However, the method also
provides usefully improved performance for practical signal-
encoder combinations, such as scalarly quantized speech-
model parameters and scalar quantized speech. Figure 1
shows an example of a scalar 3 bit/sample encoding with
a conventional scalar encoder (based on down-sampling the
G.711 p-law codebook) coder and a four-dimensional vector
decoder (¢ = 0). Table 1 shows the performance in terms
of segmental SNR (again, g = 0). The testing and training
data bases were each drawn from different data bases (ob-
tained from different sources), and contained eight speakers
(total 1 minute) and twelve speakers (total 2 minutes), re-
spectively. Signal segments with an RMS of less than 100 in
the 16-bit resolution signal were omitted from the segmental
SNR measurements.

2.2 Set-theoretic estimation

A result of the usage of optimal encoders is that the Voronoi
regions form convex sets [1]. In fact, each Voronoi region
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Table 1. Vector decoder performance for p-law coded speech

bit/sample 3 3 3 4 4
decoder dimension 1 3 4 1 3
SSNR (dB) 7.81 8.13 8.52 | 13.08 13.80

can itself be seen as an intersection of convex sets, which
are determined by hyperplanes. Feasibility algorithms are
algorithms which, given a number of (closed) convex sets
which have a nonempty intersection, find a point which lies
within the intersection of the convex sets (2]. Thus, these
algorithms find a nonunique solution which is consistent
with a set of constraints which are formulated as convex
sets. Using only the same information as a conventional
decoder, the feasibility algorithms would simply find some
point within the Voronoi region.

The strength of set-theoretic estimation is that additional
convex sets can be specified. These sets must be consistent
with the existing sets and with each other, i.e., the intersec-
tion of all convex sets specifying the problem should not be
empty. The additional convex sets usually represent explicit
a prioriinformation such as a description of the smoothness
of the original signal (e.g., [3]).

A good example of the power of set-theoretic estimation
is an oversampling D/A converter. In this case, the con-
straints are that the signal samples are within the appro-
priate Voronoi regions and that the signal is bandlimited [4].
The straightforward approach of conventional guantization
and decoding followed by a low-pass filtering operation gen-
erally violates the first condition and performance can be
improved significantly using set-theoretic estimation.

For a practical application in speech coding, set-theoretic
estimation of the decoded value does have drawbacks.
The computational complexity of the feasibility algorithms,
which are iterative algorithms based on projections, is gen-
erally high. The additional information must be formulated
in terms of a consistent convex set, which sometimes re-
quires additional information to be transmitted. Finally, in
the case that a proper criterion for optimization of the de-
coded value within a Voronoi region can be defined {which
is not formulated for computational convenience), then the
set-theoretic approach is at a disadvantage.

2.3 Criterion-based decoding

It is sometimes natural to introduce a priori information
by means of a criterion which is easily optimized under the
constraint that the solution remains within the appropriate
Voronoi region. In contrast to the set-theoretic approach,
this will generally result in a unique solution. An example of
the criterion-based approach is the decoding method for line
spectral frequencies described in [5]. There, a newly-defined
smoothness criterion was maximized under the constraint
that each sample falls within the Voronoi regions specified
by the quantization index.

Other decoding criteria can be defined. In the next sec-
tion, the operation of a new criterion will be described. It is
based on the fact that the mutual information between the
signal samples decreases when the samples are quantized
independently. This can be interpreted as a decrease in
the structure of the signal during the quantization process.
Thus, a natural criterion for enhanced decoding is to min-
imize the differential entropy rate subject to the quantiza-
tion consistency constraint. This general strategy is useful
for signal which have a relatively high level of redundancy,
such as speech and speech-model parameters in combination
with a quantizer which does not exploit this redundancy.
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3 MINIMUM-ENTROPY DECODING

The minimum-entropy decoding procedure is aimed at im-
proving the decoder performance when the original samples
have a strong interdependency which is not exploited dur-
ing the encoding process. The method is motivated by a
property of the quantization process. When a signal sam-
ple is quantized, it is assigned to a particular Voronoi re-
gion. As will be shown in subsection 3.1, the quantization
process increases the uncertainty about the signal, i.e., it
increases the differential entropy rate of the signal. The
present approach towards improved decoding aims to undo
this increase in the differential entropy rate.

As an extreme example, consider the quantization of a
deterministic signal, such as a sinusoid. (Voiced speech
signals are sometimes described as being similar to deter-
ministic signals [6].) The differential entropy rate of these
signals is negative infinite and upon quantization the differ-
ential entropy rate becomes a finite value which is a fanc-
tion of the size of the Voronoi regions and the probability of
their selection. In other words, the optimal decoded signal
has the minimum differential entropy rate consistent with
the quantization consistency constraint. This leads to the
notion that for such signals minimization of the differen-
tial entropy rate under the quantization consistency con-
straint might be a good decoding strategy. However, addi-
tional constraints are necessary since minimum differential
entropy solutions are, in general, not unique. (For exam-
ple, for a one-dimensional sample a mapping which reflects
each Voronoi region around its center does not affect the
differential entropy). This can be resolved by selecting a
particular method to reduce the differential entropy. The
method described in subsection 3.2 is a reasonable choice
since it reduces the differential entropy efficiently, i.e., the
modification in the signal associated with the differential
entropy reduction is minimal.

Of course, the above motivation for decoding by means
of constrained minimization of the differential entropy is
less compelling for signals consisting of highly independent
samples. Thus, the performance of the algorithm can be ex-
pected to vary with the input signal. However, since most
coded signals exhibit structure, improved performance can
be expected from an efficient reduction the differential en-
tropy rate for many signal/encode combinations.

3.1 Differential entropy and quantization

Consider the conditional differential entropy of a sample z,
given a vector of samples y, h(z|y). Of particular interest is
the case where the elements of y form an ordered sequence
of samples of a stationary signal, and z is the next sample
of this sequence. In the limit where the dimensionality of y
approaches infinity, the conditional entropy approaches the
differential entropy-rate of the signal. In this subsection,
the effect of quantization on k(z|y) will be discussed.

Prior to considering the effect of quantization on k(z|y),
it is useful to define a meaning for differential entropy of
the quantized signal. Here, the differential entropy h(k) of
the quantized signal z is defined as the differential entropy
of a signal which has uniform probability density within
a Voronoi region k, with the total probability within each
Voronoi region, denoted by p(k), being identical to that
prior to quantization. The relation between the entropy of
the quantization index k, denoted H(k), and the differential
entropy h(k) is easily derived and is found to be

h(k) = H(k)+ ) p(k)log[Ax), )
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where Ay is the volume of the Voronoi region.

The effect of quantization on the conditional entropy
h(z|y) can now be considered in more detail. To distin-
guish between effects which are single-sample in nature and
effects which are related to the dependencies between z and
y, the differential conditional entropy is written in terms of
a first-order differential entropy and a mutual information:

h(zly) = h(z) - I(z;y). (5)

It is natural that the conditional entropy of z given y
increases when quantization is applied to the samples of y,
independent of z. One expects quantized data to carry less
information about future data than unquantized data. This
result is straightforward to prove. Let i denote the vector
of indices resulting from independent quantization of the
sample elements of y. Each i specifies a Voronoi region
in the y space with volume A;. Using Jensen’s inequality
[7] and the fact that a function tlogt of ¢ is convex, it is
simple to show that quantization of y decreases the mutual
information between = and y:

v = £ v)log | L&:Y) .
I(z;y) = //f y)lg[f( )f(y)]dyd

. 10 e £ o
/ >0 /i S o | 2] aya
fA, f(z7y)dy

/ D A Ao yyos | = o
f(z,i)
/ Zf (2 1)log [f(z)p(l)] 4

= I(:L‘;l). (6)

A%

The increase in the conditional differential entropy of =z
given i due to quantization of z also affects the mutual
information between z and i (or y). Let k denote the quan-
tization index of z, then

I(z;) > I(k;1). (7)

where the same principles as in equation 6 were used.

Because of the assumption of uniform probability den-
sity within the Voronoi region, the differential entropy of
the quantized parameter z is greater or equal than the dif-
ferential entropy of the unquantized parameter z (this can
again be shown with Jensen’s inequality):

h(k) = k(). (8)

Note that inequality 8 describes the effect of quantization
on the differential entropy of a sample without accounting
for dependencies between the samples.

In summary, it has been shown that the mutual infor-
mation between z and y decreases both when the samples
of y are quantized independently and when z is quantized
independently. This can be interpreted as a decrease in
the structure of the signal when it is subjected to inde-
pendent quantization of its samples. In addition, using the
assumption of uniform density within the Voronoi region,
the first-order differential entropy of z increases when it is
quantized independently. Both of these contributions lead
to an increase of the differential entropy rate of the signal
when the signal samples are quantized independently.
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3.2 Differential entropy reduction

In this subsection a practical method to perform differential
entropy minimization of the signal is described. Consider
a vector s describing a finite signal segment. Let us gather
all but one of the elements of s (in arbitrary order) to form
a vector v, and denote the remaining element by w. A
predictor g(v) predicts the sample value w with error e:

e=w~—g(v). (9)

The goal is to minimize the differential entropy rate of the
signal. We move towards this goal with minimizing the dif-
ferential entropy of the vector 8, h(8) = h(w, v), by modify-
ing w. The procedure can then be iterated over the samples
of s. It is convenient to express the differential entropy as

h(w,v) = h(v) + h{(w) — I(w; V). (10)
Using equation 9 it can be shown that

I{w;v) = h(w) — h(e) + I(e; v). (11)
Combining equations 10 and 11 gives

h(w,v) = h(v) + h(e) — I(e; V). (12)

The differential entropy h(w, v) can be reduced by scaling
the prediction error e by a factor o, with o] < 1. While
I(e;v) is insensitive to the scale of e,

h(ac) = h(e) + log(Ja). (13)

Note that the scaling of the parameter e changes the pa-
rameter w into w — (1 — a)e. Thus, it is seen that choosing
the optimal predictor in the entropy-reduction algorithm
results in the smallest modification of the signal when de-
creasing the entropy. Furthermore, it is noted that the addi-
tion of a quantization consistency constraint does not affect
the basic functioning of the algorithm.

3.3 Resulis

To illustrate the performance of the minimum-entropy
method, it was applied to u-law coded speech and tone
signals, sampled at 8 kHz. A linear interpolator with 8
samples on each side of the interpolated sample was used
for the predictor g(-). The interpolator was optimized for
the conventionally decoded data. (This is not strictly cor-
rect. The predictor should be optimized for the samples be-
ing uniformly distributed within the Voronoi regions. For
the linear predictor, the present procedure was adequate.)
The interpolator was updated every 10 samples and it was
not changed during the iterative process described below.
To lower computational complexity, the interpolated val-
ues are computed simultaneously for the 10-sample speech
segments. Let j denote the sample time index, ¢(j) the sam-
ple quantization index and $,,(j) the decoded sample value
for iteration m. Furthermore, let 1(i(j)) denote the lower
limit of the Voronoi region with index #(3), u(:(7)) the cor-
responding upper limit, and §,(7) the output of the inter-
polator. Starting from the conventionally decoded values,
the entropy is reduced by iteratively scaling the prediction
error $m(j) — 8m(s) by a factor o-slightly less than unity:

sm41(y) =

mnqmaﬂsm@)-(1-axsmu)—sm(nyuﬂjnxuugyg

Experimental results for pg-law coded speech are shown
in Table 2. The results were obtained with five iterations.
Usually the performance degraded under further minimiza-
tion of the differential entropy rate, which is consistent with
the original data not being deterministic. The measurement
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and data base are identical to that used for testing vector
decoding (Table 1). The improvements are larger for voiced
than unvoiced speech segments, which is consistent with the
former being more similar to a deterministic signal.

The results for sinusoids are not reported. As expected,
the decoding method performs very well for such determin-
istic signals, and enhancement by up to 10 dB was obtained.

Table 2. Segmental SNR (SSNR) for conventional and mini-
mum entropy (ME) decoding of p-law coded speech
bit/sample 3 3 4 4 5 5
decoder conv. ME |conv. ME |conv. ME
SSNR (dB) | 7.81 9.44|13.08 15.10 | 18.92 20.48

4 DISCUSSION

It has been shown that if a quantizer does not exploit the
dependencies between samples of a signal, then these de-
pendencies often can be exploited using a prioriinformation
in the decoder. Three basic classes of enhanced decoding
were described: vector decoding, set theory based estima-
tion, and methods using an optimization criterion. Much
literature on the set theory based methods exists.

The vector decoding method and a method which reduces
the differential entropy efficiently under the constraint that
each decoded value remains in the proper Voronoi region
were subjected to experiments. The results suggest that
vector decoding can lead to a significant increase in per-
formance over conventional decoders for common quan-
tizer /signal combinations. The disadvantage of this method
is the storage requirement. While the entropy minimization
method is not asymptotically optimal like the vector decod-
ing method, it was was shown to perform better than the
vector decoder in the practical experiments performed.

In contrast to conventional signal enhancement tech-
niques, enhanced decoding exploits knowledge about the
quantizer cells, Thus, good enhanced decoding techniques
should perform better than a conventional decoder followed
by a separate enhancement technique. However, no compar-
isons with existing conventional signal enhancement tech-
niques were described in the present paper.
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