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ABSTRACT

Line Specttum Pair (LSP) representation of Linear
Predictive Coding (LPC) parameters is widely used in
speech coding applications. An efficient method for LPC
to LSP conversion is Kabal’s method. In this method the
LSPs are the roots of two polynomials P'(x) and Q'y(x),
and are found by a zero crossing search followed by
successive bisections and interpolation. The precision of
the obtained LSPs is higher than required by most
applications, but the number of bisections cannot be
decreased without compromising the zero crossing search.
In this paper, it is shown that, in the case of 10™-order
LPC, five intervals containing each only one zero crossing
of P'jo(x) and one zero crossing of Q'|o(x) can be
calculated, avoiding the zero crossing search. This allows a
trade-off between LSP precision and computational
complexity resulting in considerable computational saving,

1. INTRODUCTION

LSP representation of LPC parameters is widely used in
the domain of speech coding [1] due to its desirable
properties such as bounded range, intra- and inter-frame
correlation, and ordering (which allows simple checking of
filter stability). Additionally, LSP representation allows
frame to frame interpolation with smooth spectral changes.
The LSP representation of 10®-order LPC coefficients is
used in several low-to-medium bit-rate narrowband speech
coders such as the DoD FS1016 4.8 kbps CELP coder [2]
and the ITU-T G.729 8 kbps CS-ACELP coder [3].

In Section 2 of this paper, the definition of LSP
parameters is given. In Section 3, Kabal’s method for
computing LSP parameters from LPC coefficients is
recalled [1], giving the definition of the polynomials P',(x)
and Q',(x) whose roots correspond to the LSPs. A new
derivation of these polynomials is given in Section 4. It is
shown that in case of a 10®™-order LPC system, five
intervals, each containing only one zero crossing of P';o(x)
and one zero crossing of Q'o(x), can be calculated
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resulting in a new algorithm without zero crossing search.
Experimental evaluation of this algorithm is shown in
Section 5. In Section 6, the new algorithm is compared
with other methods in terms of computational complexity.
Conclusions and direction of future work are given in
Section 7.

2. DEFINITION OF LSP PARAMETERS

The starting point for deriving the LSPs is the LPC
analysis filter of order p:

= p -k
A (2)= 1+zk=1ak -z

A symmetrical polynomial Py(z) and an antisymmetrical
polynomial Q,(z) are formed by adding and subtracting to
Ap(z) its time reversed system function z'("“)Ap(z'l). Ifpis
even, Py(z) and Q,(z) have a zero at z=—1 and z=+1,
respectively:

Py(2)=Ap(2)+2 PA T =(1+27")-Py(2)
Q@ =A,@-z"PPA ) =(1-27")- Q)

The polynomials P',(z) and Q' (z) are symmetrical and
their zeros are on the unit circle and interlaced. These
zeros are complex conjugates and their angles (upper
semicircle of the z-plane only) are the LSP parameters [1].

3. KABAL'S METHOD

In Kabal’s method (1], the polynomials P',(x) and Q'y(x),
of order p/2, are obtained by evaluating P(z) and Q,(z) on
the unit circle (z=¢*), and applying the mapping x=cos(6)
together with Chebyshev polynomials of first kind. The
roots of P'(x) and Q'y(x) lie in the real interval (-1,+1),
with the root corresponding to the lowest frequency LSP
being nearest to +1. In the case of 10"-order LPC, P';o(x)
and Q'1o(x) are 5™ order polynomials and their zeros
cannot be calculated in a closed form. In the numerical
solution proposed in [1], zero crossings are searched
starting at x=+1, with decrements of A=0.02. Once a zero
crossing is found, its position is refined by four successive
bisections and a final linear interpolation. The total number

1707



P’10(x) and Q'10(x)

710 (x)
S P 10 (x)

x7 x6 x5
D10 (x)

Figure 1: Behavior of the functions P',o(x), Q'10(x) and D;¢(x) (X, to Xy are the LSPs
in the x=cos(0) domain, and r, to r, are the roots of D ¢(x)).

of needed polynomial evaluations is less than 150. An
efficient recursive evaluation requiring only 4 multiplica-
tions and 9 additions is also proposed in [1].

4. NEW METHOD: MIXED-LSP

Derivation of P';(x) and Q'y(x)

In the case of even p, starting from the auxiliary function
C,(2)=2*"2A(z) [4], a different derivation of P,(x) and
Q%) is done, using the mapping x=cos(8) and Chebyshev
polynomials of first and second kind. The derivation is
given in Appendix A. The obtained polynomials are
expressed as:

P (x) = Cp(x) + Dy(x)
Q) (%) = Cp(x) - Dy(x)

where Cy(x) is of order p/2 and Dy(x) is of order (p/2-1).
In the case of 10"-order LPC, D,(x) is a 4™order
polynomial and hence its roots can be calculated in a
closed form. The behavior of the functions P',¢(x), Q'1o(X),
and Do(x) can be observed in Figure 1, where x, to x;, are
the LSPs in the x=cos(0) domain, and r,; to r, are roots of
Do(x). It can be proved that the roots of Dy(x) are real,
different, inside the interval (—1,4+1) and correspond to the
intersections of P';o(x) with Q'jo(x). If the LPC filter is
stable, the LSPs are ordered such that x;>x;>...>Xxp [1].
The odd-indexed LSPs correspond to the roots of P'j(x)
and the even-indexed LSPs correspond to the roots of
Q'106(x) [1]. When going from x=+1 to x=—1 (8 going from
0 to m), P',o(x) is crossing the x-axis first at x;, then Q';o(x)
has its first zero-crossing at x,. As the next LSP is x,
P'10(x) and Q'1o(x) intersect each other before crossing the
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x-axis at x; and x4, respectively, then they intersect again

before xs, xg, before x;, xg and before xy, X;o. Thus the

roots of Do(x) divide the interval (-1,41) into five

sections, each section containing only one zero-crossing of
"1o(x) and one zero crossing of Q'1e(x).

Description of the proposed algorithm (Mixed-LSP)

The roots of D;o(x) are calculated and ordered to obtain the
five intervals containing each only one zero crossing of
P',o(x) and one zero crossing of Q'ix(x). The position of
these zero crossings is refined by five successive bisections
and a final interpolation, giving a total of 60 polynomial
evaluations. Particular attention was paid to the optimiza-
tion of the root calculation of D¢(x), which finally needs
the following operations: 20 multiplications, 34 add/sub, 2
divisions, 5 square roots, and also 3 comparison/swapping
operations for root ordering.

Given that all the roots of the polynomials P'jo(x),
Q'10(x) and Dyo(x) are inside the interval (—1,+1) and their
leading coefficients are positive, then P'jo(x=+1),
Q'io(x=+1) and D,o(x=+1) are positive. Therefore the
directions of the sign changes at every zero crossing are
known. This property is used for improving reliability of
the algorithm.

5. EXPERIMENTAL EVALUATION

The final version of the Mixed-LSP algorithm was tested
using the whole TIMIT database (6300 speech files) [5].
The speech files were downsampled to 8 kHz and the LPC
vectors were calculated as in [2], using high-pass filtering
of the speech input, 30 ms Hamming windowing,
autocorrelation method, and 15 Hz bandwidth expansion
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Figure 3: Computational complexity of different LSP calculation methods (10™-order LPC system)
(M=multiplications, A=add/sub, D=divisions, S=square roots).

(y=0.994). For every speech file, two sets of LSP vectors
were calculated, one using the Mixed-LSP algorithm, and
the other with a high accuracy method. The maximum
absolute difference found is 0.0092 (LSPs are bounded,
with |xi| < 1). The histogram of the absolute differences
found on the whole TIMIT database is given in Figure 2.
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Figure 2: Histogram of the absolute difference between
LSP sets calculated with Mixed-LSP on one
side, and high precision on the other side.

6. COMPUTATIONAL COMPLEXITY

The proposed Mixed-LSP algorithm was compared in
complexity with the methods given in [1], [4], and [6]. The
required number of operations is shown in Figure 3. The
algorithms denoted as "Quantized-search Kabal" and
"Quantized-search Chan" are modified versions of the
algorithms of Kabal [1} and Chan [4] in which the search
for zero crossings is done directly on the grid of values of
the 34-bit non-uniform scalar quantizer of the
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CELP FS1016 [2). The accuracy of the LSPs obtained with
Mixed-LSP is lower than in Kabal’s method, but sufficient
for speech coding applications. The accuracy in Mixed-
LSP can be improved using more bisections, at the cost of
10*(4-Mult+10-Add) operations per bisection. The
accuracy can also be decreased, trading precision with
computational complexity. In Kabal’s method, accuracy
can be increased at the cost of more bisections, but it
cannot be decreased, reducing complexity, without
affecting the zero-crossing search. "Quantized-search
Kabal" is slightly more efficient than Mixed-LSP but is
tied to the utilization of the 34-bits non-uniform scalar
quantizer of the CELP FS1016.

7. CONCLUSIONS AND FURTHER WORK

In this paper, we have proposed a new method for LSP
computation from 10®-order LPC coefficients. In this
method, five distinct intervals containing only one odd-
and one even-indexed LSP are calculated, avoiding the
zero crossing search used in Kabal’s method. This allows a
trade-off between LSP precision and computational
complexity resulting in considerable computational saving.

The proposed algorithm is not tied to the CELP DoD
coder and could be used in any other algorithm which
makes use of LSP representation of order 10. In addition to
the described work, a simulation of the fixed point
quantization effects was done, following the methodology
explained in [7], in order to determine the minimum word-
length and the scaling required at every point of the
Mixed-LSP algorithm. It was found that the required
wordlength is less than 24 bits. Also, the scaling needed at
each point of the algorithms was determined. These results
will be used in both a real time implementation on a
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DSP56000 processor, and a very low power ASIC
implementation for portable applications.
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APPENDIX A

The following derivation is done for p=10, but it can be easily
extended to any even p. Starting from the auxiliary function
Cy(2)=2"""?A(z) [4], evaluated on the unit circle, z=e”:

j(10+1)-0

Cpoe®)=e 2 A;p(e®)=Croe®)+j-Cijpe®)

The symmetrical and antisymmetrical polynomials, can . be
expressed as a function of the real and imaginary part of C,o(e"):
11
o By 4 —j110 —joy_ . H? )
Plo(e )= Alo(e )+e ¥ Alo(e )= e 2 -2CI'10(€‘| )
11
. . , ) -0 .
Qio(e®) = Ajp(e®)-e 04 p(e ¥y = ¢ "2 .2Cijg(e”)

The zero crossings of Crio(e®) and Cijo(e”) correspond to the
zero crossings of Plo(ep } and Qyo(e®), respectively. Grouping
terms of Cm(ei'i ):
Clo(eje)=e 2 (1+a1-e'j°+...+a10-e'j'1°'e)
[:)

P . .
=¢ 2(eP 4a, .61+, 1ay-e7%0)

Copyright 1997 |IEEE

3 6), . . (@ j . i
Clo(eﬁ)=[COS(;)'*J'Sm(i)]'[Rm(C’eHJ'Ilo(eﬁ)]

Crlo(eje)=cos(%)~Rlo(eje)—sin(%)-lm(eje)
Ci;o(e®) =si 6 i J o
10(e’” ) =sin 3 ‘Ryg(e””) +cos| 3 Iio(e™)

where:

Rlo(eje) =(1+a,9)-cos(50)+.. +(a4 +ag )-cos(8)+as
= A;5c08(56)+ A 4cos(40)+...+A; cos(B)+ A,

Im(eje) = (1-a;0)-sin(50}+.. +(ag — a5 )-sin(0)
= E5sin(50 )+ E4sin(40 .. +E,; sin(8)

Using Chebyshev Polynomials of first and second kind and the
mapping x=cos(8):

Rip(x) = 16A5x° +8A x*+.. 4+(As — Ay + Ag)

L) = V1-x2 -[16Esx* +8Ex*+...+(E5 — B3 + Ey))

=¥1-x% -TIj(x)

Crio(0 = \’HTX Ryo(x) —Jl—j} A= o0
= h;l [Rio®) - (1= x)- o] = V’HTX -Crfo(x)
Cijp(x) = JI"TX ‘Rpp(x)+ Irx - T{o(x)

2
= w/lth [Rig@)+ 1+ %) Ti0)] = JI_TX +Cifo(x)

In the interval of interest, which is 8€[0,r], the terms:

1+x (9) I-x . (G)
—— =cos{—| and ,~—— =sin|—
2 2

are different from zero, except at x=—1 and x=+1, respectively.
Thus, they can be removed without affecting the position of the
other zeros (LSPs). Then the functions:

Crip(x) = [Ryp(x) - (1= x)- Tjp(x)] = C1o(x) - Dyg(x)
Cifo(x) = [Ryg(x) + (14 x)-Ijp(x)] = C19(x) + Dyg(x)
have all the zero crossings (LSPs) of Kabal’s polynomials P';o(x)

and Q';o(x), and also the same leading coefficient (32). Therefore
Kabal’s polynomials can be expressed as:

Pjo(X) = Cr{y(x) = C10(x) = Djo(X)

Qo(x) =Cijp(x)=Cjp(x) + Dyp(x)
where Cjo(x) is a 5%-order polynomial and Dj(x) is a 4™_order
polynomial.
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