AN O(NVE) VITERBI ALGORITHM

Sarvar Patel

Bellcore
445 South St.
Morristown, NJ 07960, USA.
sarvar@bellcore.com

ABSTRACT

In continuous speech recognition, a significant amount
of time is used every frame to evaluate interword tran-
sitions. In fact, if N is the sise of the vocabulary and
each word transitions on average to E other words then
O(NE) operations are required. Similazly when eval-
uating a partially connected HMM, the Viterbi algo-
rithm requires O(NE) operations.

This paper presents the first algorithm to break the
O(NE) complexity requirement. The new algorithm
has an average complexity of O(N */E) An algorithm
was previously presented by the author for the special
case of fully connected models, however, the new al-
gorithm is general. It speeds up evaluations of both
partial and fully connected HMM and language mod-
els. Unlike pruning, this paper does not use any heuris-
tics which may sacrifice optimality, but fundamentally
improves the basic evaluation of the time synchronous
Viterbi algorithm.

Introduction

In continuous speech recognition, the Viterbi algorithm
is often used to find the most likely path given the
observations derived from the speech signal. When
statistical language models (e.g. bigrams) are used,
a significant amount of computation is performed ev-
ery frame to evaluate the interword transitions. In a
partially-connected grammar, a word on average could
be succeeded by F other words, hence there are O(NE)
operations per frame for interword transitions (where
N is the sise of the vocabulary). Partially-connected
grammar or model may occur because of the syntax
of a chosen language or simply because we have not
’seen’ enough bigram values and are forced to use some
null values for those unseen bigrams(2]. Pruning [1]
can be used to reduce computation, but at the cost of
sacrificing optimality. If, however, we are interested in
the optimal answer, then we need to perform O(NE)

Copyright 1997 IEEE

Figure 1: Partially connected bigram grammar, with
E transitions on average to and from other words.

operations per frame using the standard Viterbi algo-
rithm. This paper reports the first improvement on
that bound by introducing an algorithm with average
complexity O(N \/f) operations per frame. As an ex-
ample, with a vocabulary sise N = 5000 and average
branching factor E = 400, NE equals 2,000,000 while
NVE equals 100,000! Since the constants involved are
small this gives a reasonable view of the magnitude of
the speed-ups that are possible.

The evaluation of interword transitions is similar
to the evaluation of interstate transitions of an HMM.
While evaluating interword transitions we are searching
for the best preceding word using the probability scores
at time ¢t — 1 and the bigram values. Similarly, in an
HMM we are searching for the best preceding state
using probability scores at time ¢ — 1 and the interstate
transition matrix. The standard evaluation of the best
state path of an HMM with N states and on average
E transitions per state requires O(N E) operations per
frame(3]. Hence, the algorithm also lowers the bound
to evaluate a partially-connected HMM.

1795

When E equals N then all words can transition to
all other words, and we get the special case of a fully
connected model and the algorithm requires O(Nv/N)
operations. The author had previously presented [5] an
O(N+V/N) algorithm to speed up this special case of a
fully connected model. The current algorithm is com-
pletely general and speeds-up evaluations for all sizes
of ¥ and not just when E equals N. This algorithm
does not use heuristics but fundamentally reduces the
computations involved in the Viterbi evaluation. The
rest of the paper will present the improved algorithm
in terms of reducing the number of operations for eval-
uating interword transitions.

Previous Algorithm

In order to understand the algorithm the reader needs
to be familiar with how maximum of N expressions
can be evaluated in O(v'N) operations if we have two
pre-sorted arrays (actually one pre-sorted and one pre-
ordered). We see this is useful in reducing required
operations for fully connected models from O(N?) to
O(NV/N) operations. If the reader is already familiar
with (5] then this section can be skipped.

In standard Viterbi, for each word w at time ¢ we
have to find the best preceding word at time ¢ —1. That
is:

for w=1,2,..N,
plw,t] = max(plpw,t - 1] * bipw,w]) for pu=12,..N

w is the current word; pw is the previous word;

plw,t] is the probability score of best path
ending at word w at time ¢.

blpw,w] is the bigram weight of word w preceded
by word pw.

For each word w, N multiplications and N —1 com-
parisons are needed to find the maximum value of the
products p[pw,t-1] * b[pw,w]. Since there are N words,
O(N?) operations are required per frame. The number
of operations can be reduced if we can find the best
previous word in less than N operations; specifically if
we can calculate max (p[1,t-1]*b[1,w], p[2,t-1]*b[2,w],
«ery P[N,$-1]*b[N,w]) without having to multiply all of
the p[]*b[] products and comparing them. The rest
of the section shows how this can be done (see [5] for
details).

An array sb(pw,w] indexes b[pw,w] in sorted or-
der. The array sb[] is created once and remains static
throughout the recognition phase. For every frame, the
top k values of array p[] at time ¢t — 1 are found and
stored in an array op[] for ordered p[J; the value for k

Copyright 1997 IEEE

Ll o]

k
= MaxRark |

”””

F__J«__%

Phase!

Figure 2: Two-phase algorithm for efficiently finding
max(sb{]*op(]).

will be specified later. We see in Figure 2 that op{] has
k values which are all larger than the remaining N — &
scores. There is no sorting done among the top k val-
ues, however. The top k values can be found for each
frame using the selection algorithm for order statistics
{4) which requires O(N) operations.

After the selection algorithm for op|] is performed,
for each word w, the best preceding word is found in
two phases. Figure 2 will be used to illustrate this
algorithm.

In phase 1, each of the k expressions op[]*sb[] is
evaluated while the maximum product is updated, as
well as the Maxrank, the index of the highest sb[] value
used in one of the k op[]*sb[] expressions. It is clear
from Figure 2 that none of the remaining sb[]’s to the
left of Maxrank can result in the maximum value of
op{]*sb{] because none will have op|] larger than the
op|] associated with sb[Maxrank,w]. That is, the op|]
will have to come from the remaining N-k op[]’s which
all have lower values. The sb[)’s to the left by defini-
tion have lower values than sb[Maxrank,w] because the
array is sorted. Therefore, the only possible way of get-
ting a larger maximum, is to evaluate the expressions
involving sb{]’s which are to the right of the Maxrank
in Figuze 2.

This is done in phase 2, where the sb[]'s to the
right of Maxrank have the appropriate expression p|
]1*b[] evaluated and the maximum value updated if nec-
essary. There are N-Maxrank expressions to be eval-
nated. The algorithm will always terminate with the
correct maximum product, and k + (N - Maxrank) ex-
pressions are evaluated. In [5] the best value for k is

1796

Top %5 scores
maxy,Maxranky

Figure 3: Phase 1 of new algorithm: successor Viterbi
is performed on top words at ¢t — 1.

derived to be VN + 1 — 1, expected value of Maxrank
is k(N + 1)/(k + 1) and thus the total number of ex-
pressions evaluated on average are O(N vN)-

New Algorithm

The previous algorithm is efficient in evaluating fully
connected models, and even in a partially-connected
model with a large E it may still be more efficient than
standard Viterbi. However, we present a new algo-
rithm which is more efficient than standard Viterbi and
the previous algorithm for partially-connected models
in general. Lets say word w at time t has E, edges
or transitions coming into it. If we can somehow ac-
cess the top VE, p[pw,t-1] values with transitions to w
and evaluate the associated p{pw,t-1)*b[pw,w] expres-
sions then on average we would only need to do E,
more expressions as presented in previous section, thus
requiring a total of 2¢/E, or O(VE,) expressions eval-
uated. Although we can find top vE, p[pw,t-1] val-
ues, not all will transition into word w. Thus we would
have to check more than top E, p[pw,t-1], and now
we cannot make the claim that the algorithm only re-
quires O(/E,) expressions. This complicates the situ-
ation and requires a modified algorithm. The modified
algorithm is still simple, but its slightly more compli-
cated to prove bounds on the average running time of
the algorithm.

There are actually two ways to perform a standard
Viterbi, and we use both ways in the two phases of our
algorithm. First, the standard Viterbi can be evaluated
by expanding successor words from t-1 to time t. At ¢
many p{w,t] values are simultaneously updated as some
word pw expands into many words at t. Each w reached

Copyright 1997 |IEEE

Figure 4: Phase 2 of new algorithm: predecessor
Viterbi is performed on E,-Maxrank expressions for
every word w (only first word is shown).

from pw updates its value by keeping the maximum of
its previous value and the new p[pw,t-1]*b[pw,w] value.
After all pw words at t-1 are expanded then at time t
all words will have the proper p[w,t]. We will call this
the ‘successor Viterbi.’ Secondly the standard Viterbi
can be evaluated in the way we did in the preceding
section. At time t for word w, we evaluate p[pw,t-
1]*b[pw,w] for all words pw which can precede word w
and keep updating p[w,t] value to be the maximum of
the expressions. Once we are finished with word w then
we move onto the next word w+1 and do the same. We
will call this, the ‘predecessor Viterbi.’

The new algorithm works as such: First the top
N/VE values of array p[) at time t-1 are found and
stored in op(] for ordered p{); In phase 1 (see Figure 3),
‘successor Viterbi’ is performed on the top N/ vVE words;

i.e. all successor words to the top N /ﬂ/f words at t-1
are expanded and the appropriate words w at t have
their scores updated. However, along with the max-
imum value being kept as the score, Maxrank value
is also updated. Maxrank for word w at t indicates
the index of the highest sb[] value used in one of the

k op[]*sb]] expressions. Although N/VE words at t-1
were expanded, we don’t know how many transitioned
into a given word w at t, hence, we said k op[J*sb[] ex-
pressions evaluated for w and not N /\/E. In Phase 2
(see Figure 4), we will now perform ‘preceding Viterbi’
on all words w at t. That is for word w at t, we will
only evaluate the remaining N-Maxrank (E, -Maxrank
to be precise) expressions associated with sb[)’s to the
right of Maxrank for w. We know from previous sec-
tion and figure 2 that expressions associated to the left
of sb[]’s cannot possibly result in a larger value. We do

1797

this for all w at t and thus all words at t will have their
correct p[w,t] values.

Complexity of the Algorithm

At first, there doesn’t seem to be much hope that we
can get any meaningful bounds on the complexity of
the algorithm, but we will see how this is possible. Lets
just consider one word w: In phase 1 we assumed that
k words reached word w with some probability problk].
And in phase 2, E, — Mazrank further expressions
were evaluated. The expected value for Maxrank is
E(E, + 1)/(k + 1) and is derived in [5]. E, is the
total number of edges or transitions into word w. So
altogether for word w we have to evaluate k expressions
in phase 1 plus E, — E[Mazrank] phase 2 expressions.
So f(k), the total number of expressions evaluated for
a particular k is k + E, — k(Ey + 1)/(k + 1) or after
simplification (k3 + E,)/(k+1) = k?/(k+1)+ E, /(k+
1).

‘ Prob[k] is actually a hypergeometric distribution,
but since N/ VE is large, we can approximate it well
with the binomial distribution. Binomial distribution

b(k;n,p) is :) (1 - p)*~*. That is probability

of k successes out of n where a success occurs with
probability p. In our algorithm there are E, words
out of N words which will transition into word w. So
the probability of success that a given word picked in
phase 1 will transition into wat tis p = E, /N; N/\/f
is n; Now we can calculate Expected[f(k)] for w.

E[f(k)]

3 f(k)prob(t)

1-0

IEAES

()
(1)

i: ¥ (")p"q’“" < ik)Pt
h:ok-+l k - k=0 k
= np= N B _ 5
VEN ~VE

E, (n+1 P +)-(41)
(n+1)p,§(’=+1) !

1
Ey 'f: n+1 P
(n+1)p u

Copyright 1997 |IEEE

E,

(n+l) ——2—(1 - b(0;n + 1,p))
—-(1-¢"*") < B, /(np)

E, _
(N/VE)+(E,/N))

(n+ l)p

Therefore E[f(k)] < E, /\/f + VE. Since there are N
words, the total number of operations = N « E[f(k)] <

Nx»(E, IVE + \/E) E, the number of transitions in
to a word is distributed by some prob(E,] with mean
VE over the N words. Therefore

5 v

B,=0

= + V)« prob{Fu] =

V_EE;,E' +prob[Ey] + NVE +1=

l1’?4-17\/%:2”\/?
vE

Hence the total number of operations required is O(NVE).

Conclusion

We have presented a faster algorithm for performing
Viterbi evaluations on partially connected models. This
algorithm has average complexity O(N \/E) and is the-
oretical interesting because until now it was assumed
that O(NE) operations are necessary. Since the con-
stants involved in the complexity bounds are small, this
algorithm is also highly practical.

References

[1] B. Lowerre, D. R. Reddy, “The HARPY speech un-
derstanding system”, in Trends in Speech Recognition
(Lea, W. ed.), pp 340-346. Prentice-Hall, Englewood
Cliffs NJ, 1980.

{2] S. Austin, P. Peterson, P. Placeway, R. Schwarts, J.
Vandergrift, "Toward a Real-Time Spoken Language
System Using Commercial Hardware,” Proc. DARPA
Speech and Natural Language Workshop, pp 72-77, 6/90.
[3] Lawrence Rabiner, “A Tutorial on HMMs and Se-
lected Applications in Speech Recognition,” Proc. of
the IEEE, Vol 77, No 2, pp 257-286, Feb 1989.

[4] R. Floyd, R. Rivest, “Expected Time Bounds for
Selection,” Commaunications of the ACM, Vol 18, No 3,
pp 165-173, March 1975.

[5] Sarvar Patel, ”A Lower-Complexity Viterbi Algo-
rithm”, Proc. ICASSP 95, pp 592-595, 1995.

1798

