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ABSTRACT

In this paper, we investigate the self-adaptive source sep-
aration problem for convolutively mixed signals. The pro-
posed approach uses a recurrent structure adapted by a
generic rule involving arbitrary separating functions. We
first analyze the stability of this class of algorithms. We
then apply these results to some classical rules for instanta-
neous and convolutive mixtures that were proposed in the
literature but only partly analyzed. This provides a better
understanding of the conditions of operation of these rules.
Eventually, we define and analyze a normalized version of
the proposed type of algorithms, which yields several at-
tractive features.

1. PROBLEM STATEMENT AND CLASSICAL
RESULTS

Blind source separation is a generic signal processing prob-
lem which concerns e.g. antenna or microphone array pro-
cessing [1]. In the model commonly used to represent it [2]-
[4], two sensors provide measured signals yi{n) and y2(n),
which are unknown convolutive mixtures of two unknown
source signals z;(n) and z2(n), i.e. in the Z domain:

Yi(z) = Xi(2) + Ar2(2).X2(2) (1)
Y2(2) = Az1(2).X1(z) 4+ Xa(2), (2)

where A;;(z) is the unknown transfer function of the chan-
nel that links source j to sensor 1. The impulse response of
this channel is denoted (ai;(k}), o hereafter. In this paper,
both mixing filters A;; are assumed to have a causal moving
average (MA) structure with the same order M. Moreover,
the sources z1(n) and z2(n) are assumed to be stationary,
zero-mean and statistically independent.

The source separation problem consists in estimating the
source signals z;(n) from the measured signals y;(n) up to
a permutation factor and a filter. This problem was ini-
tially investigated in the case of instantaneous mixtures,
i.e. mixtures for which each MA filter A;; is restricted to
the single coefficient a,;(0). It was recognized that in this
case, if no assumptions are made on the color of the source
signals, these signals cannot be separated by resorting only
to second-order statistics [1]. The first solution to this prob-
lem was proposed by Hérault and Justen {1]. It is based on
the recurrent structure shown in Figure 1, with each MA
separating filter C; restricted to the stngle coeflicient ¢, (0).
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Figure 1. Recurrent source separation structure.

These coefficients are adapted with a rule that reads:

cin+1.0) = ¢y(n,0)+ uf(si(n))g(s;(n))
i# e {12}, (3)

where y is a positive constant adaptation gain and f and/or
¢ are odd nonlinear functions which allow to resort to the
higher-order statistics of the signals.

Nguyen and Jutten [2] then proposed a natural extension
of the above approach for causal convolutive mixtures. The
recurrent structure of Figure 1 then contains causal MA
separating filters C;;, whose coefficients are adapted with
the rule:

con+ 1L k) = cij(n k) + nf(si(n))g(s;(n = k))
i#j€{1,2},kelo, Ml (4)

This approach was mainly studied in the case f(x) = 2* and
g{x) = x, for which it achieves a stochastic cancellation of
the (3.1) cross-moments of the output signals s; and s;, and
for which the rnle (4) reads:

cij{in+1.k) = cij(n,k)+ /LS?(”)S]'('", — k)
i#5€{1,2}kefo,M] (5)

A similar approach was independently developed by Al-
Kindi et al. [3] and Van Gerven et al. [4] for the case
of strictly causal mixing filters, i.e. filters A;; such that
a;, (1) = 0. The justification provided for not considering
the instantaneous part of the mixtures (corresponding to
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ai;(0)) was the nonzero propagation delay between sensors
in the considered configuration [3]. This approach is also
based on the recurrent structure [3],[4] (or on the corre-
sponding feedforward structure [4]). The coefficients of its
strictly causal MA separating filters C;; are adapted by a
rule based on the second-order statistics of the signals, i.e:

cij(n+1,k) = cij(n, k) + pusi(n)sj{n—k)
i#je{l,2}, ke, M] (6)

which achieves a decorrelation of the output signals.

While the experimental performance obtained with the
above algorithms has been reported in detail, their theoret-
ical properties have only been partly analyzed. Especially,
stability analyses were mainly provided for a restricted case
of the rule (3) corresponding to f(x) = ™ and g(x) = z"
(see e.g. [5]). On the contrary, the stability of the extended
rules (4) or (5) has not been analyzed, and the rule (6) has
only been studied in the case when the mixing and separat-
ing filters contain a single time-delay coeflicient [4].

In Sections 2. and 3. below, we present new results about
these rules, and more generally speaking we provide an anal-
ysis of the stability of the recurrent structure of Fig. 1 for
a larger class of non-linear adaptation rules that reads:

cii(n k) + pfilsin)ai(s, (n = k)
i#j€{1.2).keo.M), (1)

cijin+1,k) =

where f; and g¢; are arbitrary functions at this stage. This
analysis is performed for the desired convergence point of
the adaptation rule, called the ”separating point™. This
point corresponds to Cij(z) = A:ij(z) and yields S;(z) =
Xi{z). The only condition set on the functions f; and g,
is: Efgi(z,)] = 0, which ensures that the separating point
is an equilibrium point of the rule (7).

An extension of this generic rule is then considered in
Section 4. and conclusions are drawn from the overall in-
vestigation in Section 5

J..
2. GENERIC STABILITY ANALYSIS

All the coeflicients c;j(n, k) of both separating filters (7,
involved in the above rule (7) may be gathered in a vector

8, = [(‘12(11,(‘)),...,(‘1'_)(".11’]),

ca1(n,0), ..., e (n, M7 (8)
The rule (7) may thus be expressed in vector form as
9n+l =€n +NH(071‘£11+1)- (9)

where £,41 and H(0,,,£.41) are column vectors defined as:

bntr = [ni(n),w2(n),
si{n—1),...,s1(n— M),
sz(n,—1),..‘,.52(11—/\1)]T, (10)
H(n,En41) = [fi(s1(n))gi(s2(n)),.

fils "))11(52(71*1\1))
fa(s2(n))g2(s1(n)), ...,
fals2(nNga(si (e = MN]T. (1)
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The approach used in this paper to analyze stability is the
so-called Ordinary Differential Equation technique (ODE)
{6), which approximates the discrete recurrence (9), for a
small adaptation gain g, by a continuous differential system
that reads:

_;T = Eg[H(H,En-#l)]' (12)

The differential system (12} is locally stable in the vicinity
of any given equilibrium point 6* if and only if (iff} the
associated tangent linear system:

de

=) - 6") (13)

is stable, i.e. iff all the eigenvalues of J(8*) have negative

real parts. For any point 8,. J(#) denotes the Jacobian ma-

trix of the system. l.e. the matrix of partial derivatives with

entries:

O(Eo[H(8,6041)]'))
a6(3) ’

where  Eo[H(0.6,40)]'"Y  is  the '™ component
of Eo[H(8.6n41)] and 89 is the 3 component of vector
8.

For the rule (7) considered in this paper it can be shown
[7] that, if 2y (1) and r2(n) are independent identically dis-
tributed random variables, the eigenvalues of the Jacobian
matrix at the separating point, J(8%), are’

'I'.)(H) = (14)

1) — 0 Weg(0) (15
2) —auw,y(0) (16
3)  [-ex VAl L2 ras>o (17

[-o+i V—A] 2@

—bweq(0)/2

if A<O
ifA=0

with the following notations (in which 3 is chosen so that

i# € {1.2))

ar = E[fi(x)]Elz;gi(z,)) (20)
3 = Elrifilx))Elg(x,)] (21)
5o = ay (M E[fi(e0)] El2;9: (x,)] (22)
& = o —pp4ar - (23)
A = [lor—v) = (a2 —92)] +48:182 (24)
weg{ll) = —~—‘]__~—— (25)

1 - (L]Q(O)ll21(0)

The stability condition (i.e. all eigenvalues having nega-
tive real parts) therefore reads as follows depending on the
sign of A:

o if A>0

Q1weq(0) > 0
aoweq(0) > 0
(a1 — @1 ) (o2 —@2) > 8162 (26)
(a1 + a2)w.y(0) > (@1 + @2)weq(0)

Yn (18). i represents the complex square root of —1.
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e if ALO

a1wWeq(0) > 0
a2Weq(0) > 0 (27)
(a1 + a2)weq(0) > (@1 + 2)weq(0)

In the case of strictly causal filters, it can be shown that
the eigenvalues become restricted to —a; and —a2. The
stability condition then reads:

ay >0 -
{ ap > 0 (28)

For instantaneous mixture and separation, the eigenval-
ues consist of the expressions (17)-(19). The stability con-
dition then becomes:

e ifA>0
{ (a1 —@1)(o2 —92) > Bi 32 (29)
(a1 + @2)weq(0) > (p1 + @2)we,(0)
e ifALO
(1 + a2)weq(0) > (01 + p2)weq(0). (30)

All these stability conditions are detailed for specific al-
gorithms in the next section.

3. APPLICATION TO CLASSICAL
ADAPTATION RULES

The generic approach presented in Section 2. especially ap-
plies to the classical adaptation rules defined in Section 1..
This allows one to derive stability conditions for these al-
gorithms, which have not been reported up to now. This
method is applied hereafter, with main emphasis on the
most unexplored field, i.e. convolutive mixtures.

3.1. Analysis of two classical algorithms for con-
volutive mixtures
3.1.1. Analysis of the decorrelation algorithm

As a first step, we consider an extension of the decorre-
lation approach described in Section 1. to the case of (non
strictly} causal mixing and separating filters. The rule (6)
then becomes

cis(n+1,k) = ci(n, k) + psi(n)sj(n — k)
t#je{l, 2L, kelo. M. (31)

This rule is a particular case of the general framework con-
sidered in Section 2., corresponding to

filz)=2 i€{1.2} 9
gi(r) =z 1€{1.2} (32)

Note that the assumption Egi{z,)] = 0 made above on the
separating functions g; is valid here, since it corresponds to
the zero-mean hypothesis made on the sources. i.e:

E[z;]=0. i€{1,2}. (33)
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The eigenvalues of the Jacobian matrix at the separating
point are derived by applying (15)-(25) to the functions
defined in (32), thus yielding:

= Ef23]weq(0)
~ E[23]weq(0)
—(Ele?] + El3]weq(0)
0

(34)

Since these eigenvalues are real, the stability condition cor-
responds to their negativeness which requires that:

Wey(0) > 0 (35)
or equivalently:
1 - (1‘12(0)(1.21(0) > 0. (36)

Nevertheless, the algorithm always yields a null eigenvalue.
This implies that the algorithm is not asymptotically stable,
but only globally stable with fluctuations. This means also
that there exists a one-dimensional subspace, the Kernel
of J(#7). associated to eigenvectors corresponding to the
null eigenvalue, in which asymptotic convergence cannot be
reached. In fact, from a computational point of view, the
estimation associated to the null eigenvalue may take small
but non null values that may be positive, leading then to
instability.

Let ns now consider the case of strictly causal filters. The
eigenvalues of the Jacobian matrix are then —E[z?] and
— E[23] that are always negative. Hence, the decorrelation
scheme vields an asvmptotically stable separating point in
this case and becomes then a potentially attractive separa-
tion procedure.

B0 Analysis of the algorithm based on (3,1) cross-
moment cancellation

We have slhown above that the decorrelation criterion
may lead to a numerically unstable algorithm in the gen-
eral case of causal filters. The cause of this problem is that
the first-order lag coeflicients ¢12(n,0) and c21(n,0) are up-
dated by the same correcting term, i.e. psy(n)sz(n). There
arce different strategics to overcome this problem. A well-
known one consists in using the algorithm (4) with at least
oue non-linear separating function f or g. Especially, the
specific case which has been considered in the literature is
the rule (5). This algorithm is also a particular case of (7),

obtained for:
file) =23
gi(z) =1

By applying (153)-(25) to the algorithm (5), the eigenvalues
of the Jacobian matrix at the separating point become:

ie{1,2}
i€{1,2) (37)

—3E[23]E[23)w.q(0)

- (3ELNEL £ VERTERD) (o) )

and the stability condition is then:

Waq(0) >0
{ E[x})E(e3] < 9E*[23)E?*[23] (39)
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The second condition in (39) corresponds to the global sub-
gaussianity of the sources. It should be noted that (39) is
the same stability condition as with the (3,1) cross-moment
cancellation algorithm for instantaneous mixtures [5].

3.2. Analysis of a classical algorithin for instanta-
neous mixtures

Here, we consider the Hérault-Jutten algorithm (3) for in-
stantaneous mixtures. As stated in Section 1., the corre-
sponding stability condition was only studied for a limited
class of separating functions and symmetrically distributed
sources. This paper extends these results by providing a sta-
bility condition at the separating point for possibly asym-
metrically distributed sources and any separating functions
f and g. This is an application of the results of Section 2.
about instantaneous mixtures to the case when:

fi=fi= 1/, {40)
gi =y2 =y. (41)

The stability condition is then directly obtained by applying
(29)-(30) to the case defined by (40)-(41).

4. DEFINITION AND ANALYSIS OF A CLASS
OF NORMALIZED ADAPTATION RULES

In this section, we introduce an extended version of the class
of non-linear adaptation rules (7) considered above. This
extended type of rules reads:

Fi(si(m)}  gi(s,(n — k)
VEF(s] VEl2 ()]

cij(n+1,k) = cij(n,k)+p

i#5€{1,2)kel0, M), (42)

where the terms \/E[f?(e.)] and \/E[y?(s])] are estimated
in practical situations, using first-order low-pass filtering.
This rule can be seen as a zero-search procedure for the
set of correlation coeflicients between the random variables
fi(si(n)) and gi(sj(n — k)), instead of the classical zero-
search procedure for the nown-normalized correlation be-
tween these two variables used in (7). The main moti-

vation for this rule is that the variance of its correcting
filei(n))  ohlsi(n—k))

VEZED \/Blod s
ing point, thanks to the normalization performed by the
terms \/E[f?(q.)] and \/E’[g?(s,)] This value is indepen-
dent from the scales and statistics of the sources and from
the separating functions. The adaptation gain g can there-
fore be selected independently from these parameters, so
as to achieve the desired trade-off between convergence ac-
curacy and speed. This independence with respect to the
source parameters is especially attractive, as these param-
eters are supposedly unknown. This rule is also well-suited

term is equal to one at the separat-

to non-stationary sources, for which short-term estimates of

V Elf?(si)] and \/E[g?(s;)] make it able to automatically
track the fluctuations of the characteristics of these sources.

The results presented above for the non-normalized rule
(7) cannot be applied directly to the rule (42) considered
here, because the latter rule includes additional estimated

parameters (i.e. \/E'[ff(e.)] and \/E[g?(s,)]). However,
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(42) combined with the estimation of the associated pa-
rameters \/ E[f?(s:)] and \/E[¢9?(s;)] can be formulated
as a relaxation scheme having the form (7) with a second-
order perturbation term [7]. It can also be shown that this
normalization scheme does not modify fundamentally the
results obtained in the previous sections. More precisely,
computations show that the stability condition for the al-
gorithm (42) is the same as the condition for the algorithm
(7), except that f; and g; are resp. replaced by F; and G;
defined as:

Fiz) = —2i2)

- VER @) (43)

Giz) = ____9'_({)___
V Elg? ()]
5. CONCLUSIONS

While a few time-domain source separation algorithms for
convolutive mixtures have been proposed in the literature
and experimentally studied, their convergence properties
had almost not been analytically studied up to now. In
order to fill this gap. in this paper we have analyzed the
stability (at the separating point) of a large class of algo-
rithins, which especially inclndes the classical approaches.
As a by-product. we have thus also extended the theoretical
results reported for the Hérault-Jutten algorithm for instan-
tancons mixtures. Moreover, we have defined and studied
a normalized version of the proposed class of algorithms,
which yields several attractive features.
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