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ABSTRACT

We prove that the exact reconstruction of a function s
from its samples s(z;) on any "sufficiently dense” sam-
pling set {z;};er C R™, where I is a countable indexing
set, can be obtained for a large class of spline-like spaces
that belong to LP(R™). Moreover, The reconstruc-
tion can be implemented using fast algorithms. Since,
a special case is the space of bandlimited functions,
our result generalizes the classical Shannon-whittacker
sampling theorem on regular sampling and the Paley-
Wiener theorem on nonuniform sampling.

1. INTRODUCTION

In sampling theory, the main goal is the exact recon-
struction of a continuous function g(z) € C(R™) form
its samples g(x;) on a sampling set X = {z;}ic; C R™
If the sampling is uniform, i.e., the set X = {z;}iers
lies on a uniform cartesian grid, then the function g(z)
can be recovered exactly from its samples as long as
g(z) € L*(R™) is bandlimited and that the grid-points
density is larger than the Nyquist density [21]. This
is the classical Shannon-Whittacker sampling theorem.
In particular, if g € L?(R) and its Fourier transform
(f) = [g(z)e~"f=dz is such that §(f) = 0,Yf ¢
I =[-3,3] (ie, g € By), then g(z) can be recovered
from g(zo + k), k € Z by the formula [21, 24]:

9(@) = 3 9lwo + Klsine(z —z0 = k), (1)
keZ

where o € R is arbitrary, and where, the interpo-
lating function sinc(z) = fﬂ(f-z-l is simply the inverse
Fourier transform of the ideal filter function x(f) in
the band I = [~3, 3] (i.e., xs(f) is the characteris-
tic function of the interval I: xi(f) = 1, Vf € I,
and x;(f) = 0, Vf ¢ I). An identical statement to
the Shannon-Whittacker sampling theorem is that the
set of bandlimited functions By, with bandwidth in
[—3, 3], is precisely the set of functions belonging to
the space S(sinc) that is obtained by linear combina-
tions of the sinc-function and its integer shifts, with
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square summable coefficients:

S(sinc) = {Z c(k)sinc(z — k) | c € 22} . (@

keZ

In fact, the set {sinc(z — k)},cz is an (even orthonor-
mal) unconditional basis for the space B%. Specifically,
a basis {ex}xez of a Banach space B (a Banach space
is an infinite dimensional normed vector space which
is complete) is unconditional if ), c(k)ex € B implies
that >, exc(k)er € B for any choice of ex equal to
either +1 or —1 [17, pp. 16].

The Shannon-Whittacker sampling theorem can be
generalized by changing the sinc-function in (2) to an
appropriate generating function A(z) as described in
3, 4, 5]:

S(A) = {Z c(k)Mz —k) | ce £‘2} , (3)

keZ

In this generalization, the spaces S()) are not necessar-
ily bandlimited. The bandlimited case and the expan-
sion (2) are obtained as the special case A\(z) = sinc(z).
Moreover, the sampling theory for bandlimited func-
tions is also a limit case for families A™(z) with in-
creasing smoothness as n — oo (see [5] for details, and
[6, 23] for examples that use polynomial spline func-
tions). Other generalizations of the uniform sampling
theory are discussed in [15, 16].

The classical result for nonuniform sampling is due
to Paley and Wiener, and it states that if the set X =
{z:}iez C R is such that |z; — i| < 72, then a ban-
dlimited function g € C(R), with bandwidth [~v,7]
and || < §, can be completely recovered from its sam-
ples g(z;) [19]. Kadec later showed that the same is
true if |z; —i| < 1/4, cf. [26]. A detailed exposition
and other generalizations of the Paley-Wiener irregu-
lar sampling result can be found in [7]. There are also
other types of results on irregular sampling in which
the sampling set is nonuniform, but fixed [25], i.e., the
reconstruction is guaranteed for a specific sampling set
only, and no others. However, these types of results
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are different from those of Paley-Wiener which do not
require a fixed sampling set, but any sufficiently dense
sampling set.

Extension to the multidimensional irregular sam-
pling of bandlimited functions in L?-spaces can be found
in [14, 11] (a function g is in L? if [ |g(z)}Pdz < o0).
The results are based on the properties of Wiener amal-
gam spaces [10, 11] which we also use in this manuscript.
In particular, we will use the Wiener spaces W? =
W (C, L?) which are locally continuous and globally L?.
This means that a function g belongs to W7 if ¢ is con-
tinuous, bounded, and [ |g(z)[Pdz < oco.

In the present paper, we will extend the theory of
multidimensional irregular sampling in {14, 11] to the
case of spline-like spaces S(A\) C LP(R™) of the form

S(\) = { > ck)A(z —k)|ce ep(nn)} @

kEZn

Our results can also be viewed as an extensions of those
in [18] where some ideas from [14, 11], and ideas similar
to those in [5] are used to construct, under restrictive
conditions, an irregular sampling theory for polynomial
spline and other wavelet subspaces of Ly(R).

2. SPLINE-LIKE SPACES

Since the space S(\) that we consider must belong to
LP(R™), the function A cannot be chosen arbitrarily.
Moreover, we want the set {A(z — k)},cz» to form an
unconditional basis of S(A). A sufficient condition is
given by the following proposition:

Proposition 2.1 The space S()) is closed, and the set
{AMz = k)}ezn forms an unconditional basis of S(N)
if there erist two constants B > A > 0 such that

P

Allelle < || Y etk)Mz—k)| < Bllef.  (5)

kEZn

Lr

To see that {A\(z — k)},cz~ is a basis, simply note that
if 3, c(k)AM(z — k) = 0, then the left inequality of (5)
implies that ¢ = 0. The inequality on the rigth of (5)
implies that this basis is unconditional. For the special
case of L?(R™), to satisfy (5), a necessary and sufficient
condition on a function A is that the Fourier transform

a(f) = 3 alk)e (6)

kezZn ‘
=T g +m)

of the sampled autocorrelation a(k) = (Ax AV)(k), k €
Z™, must be uniformly bounded above and below (here
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by definition AY (x) = A(—z)), i.e., there exist two con-
stants M > m > 0 such that [4, 5]

m<a(f)= Y ’:\(f+k)l2§M ae. (7)

kezZn

This result can be found in [4, 5], and is also a special
case of a general result in [2].

3. MAIN RESULT ON EXACT
RECONSTRUCTION

Our ability to reconstruct a function g € S(A) from ir-
regularly spaced samples depends on the sampling den-
sity of the sampling set. In particular, for any sampling
set X = {z;}ier C R™, the density measure that we
use is given by [12, 13]:

Definition 3.1 A set X = {z;}ic1 is v-dense in R",
if R™ is the union of balls centered on z;, and of radius
v:
R™ = | By(z:).
iel

In one dimension, a set X = {z;}ie; C R is y-dense
if the maximal distance |z;41 — z;| between any two
consecutive sampling points is smaller that v. The ~-
density plays the same role for irregular sampling as
the role of the Nyquist rate for uniform sampling.

If the set X = {zi}ics is v-dense, then we can al-
ways construct a piecewise-constant function Vs that
interpolates the samples s(x;) of a function s € 3, i.e,,
Vxs(zi) = s(xz;), Vi € I. The interpolating function
that we construct is constant on the Vornoi domains V;
of the sampling points z;. These domains are defined
by

Vi={z: |z —z| <|z; — x| Yi#j}

In particular, in one dimension, the Vornoi domain of
the point z; is the interval [m;,m;+1], where m; is the
midpoint between z; and z;_1: m; = (z; + x;-1)/2.
Thus, for a function s € WP, we define the piecewise-
constant interpolant operator Vx by

Vs = s(z:)xv. (8)

iel

where xv; is the characteristic function of V;. It is well-
known that the operator Vx maps the space WP into
the space W(L>, L?) C L? [9].

By interpolating the samples of a function s € S
with Vx, and then projecting the interpolated function
Vx s on the space S, we get an approximation s; € §
of our original function s. Since s and s; belong to S,
the error e = 5 — 5; belongs to S as well. The values

1858



e(z;) = s(z;)—s1(z;) of the error at the sampling points
can be evaluated. Using the samples e(z;:), we can
repeat the interpolation and projection procedure to
obtain a function e; € S. We add e; to s to obtain the
new approximation sy to our function s. By repeating
this procedure, we obtain a sequence s; + e; + e; +
es + --- that converges to the function s as stated in
the theorem below (for proof, cf. [1]). The operator P
is simply a linear projector (not necessarly orthogonal)
from L? into S.

Theorem 3.1 If the generating function A belongs to
the Wiener space W1, then we can recover s € S(\)
from its samples {s(z:)} on any v-dense set X = {z;},
for a sufficiently small ~, by the following iterative al-
gorithm

PVx(s — sn) + 8n (9)
PVxs (10)

Sn41 =
So =

where P is any projector, and where the convergence of
$n to s occurs in the LP-norm and the WP-norm, and
we have ||s — s,|| < Cra™, for some a = a(y) < 1, and
Ci < x.

A typical example for the performance of the suggested
allgorithm is given in Figure 1. Although most ex-
amples are "approximately band-limited” the use of
standard band-limited reconstruction methods would
give only approximate reconstruction, whereas we have
complete reconstruction under the circumstances de-
scribed in this note. In effect, the iterative
algorithm (9) reduces to

Sn41 =(I+T+T2++Tn)PVXS

where T' = T — PVx, and gives the inversion of I — T
by the Neumann series: (I —T) ' =T+T+T? +--.

Remark 3.1 The fact that the sampling values s(z;)
are well defined follows from the fact that, under our
condition on the generating function A, the space S(A)
is a subspace of the locally continuous and globally L?
function space WP,

Remark 3.2 An important point is that the reconstruc-
tion does not depend on any individual sampling set
X, but only on the their y-density. This means that
as long as the gap between samples is not too large,
we can always recover any function in S ezactly with
our iterative algorithm. Moreover, in contrast to other
appraoches, our method can handle clusters in the sam-
pling set. On the other hand it is not a simple frame
algorithm, since we are not in a Hilbert space setting
anymore, and thus the alternative tools, such as Wiener
amalgam spaces, have to be used.
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Figure 1: The function s € S{Gaussian) (top left)
which is a linear combination of a Gaussian function
and its integer shifts, is sampled at the points marked
by a cross x (clearly, it is not a bandlimited function).
The bottom left panel shows the error after 15 itera-
tions. The bottom right panel clearly shows that the
error decreases exponentially fast.

Remark 3.3 The interpolant Vx can be replaced by
other types of (quasi-)interpolants without changing the
validity of the theorem. In particular, we can choose a
set of measurable functions ® = {p; }:cr associated with
the sampling set X and satifying the following three
properties: (1) 0 < ¢; €1, Vi € I, (2) support ¢; C
By (x:), (3) 2ic;¢i = 1 and use an interpolation of
the form Qas = 3, s(zi)i.

4. CONCLUSION

We have shown how to reconstruct spline-like functions
exactly, from their irregular samples. These functions
are not bandlimited, in general. The bandlimited the-
ory is a special case. The theory is valid for any di-
mension and it generalizes the Paley-Wiener theory on
nonuniform sampling. Theorem 3.1 shows that, the
reconstruction algorithm converges exponentially fast
(O(a™), a < 1) as the number of iterations n increases.
Since the contraction factor o is a decreasing func-
tion of the density « the algorithm will converge more
rapidly for denser sets. Moreover, for the special case of
finite energy signals L?, the projection operator in the
algorithm can always be implemented with fast filtering
algorithms as described in [5], which further improves
the speed of the algorithm.
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