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ABSTRACT

We consider detection and estimation of aeroacoustic
shockwaves generated by supersonic projectiles. The shock-
wave is an N-shaped acoustic wave. The optimal detec-
tion/estimation scheme is considered based on an additive
white Gaussian noise model. The introduction of an invert-
ible linear transformation, such as the Fourier transform or
the wavelet transform, does not improve detection perfor-
mance under this model. However, if unknown interference
and/or model mismatch is present, linear transforms may
be of use. In addition, they may significantly reduce com-
plexity at the cost of sub-optimality. We consider the use
of the wavelet transform as a means of detecting the very
fast rise and fall times of the shockwave, resulting in a 1-D
edge detection problem. This method is effective at mod-
erate to high SNR and is robust with respect to unknown
environmental interference that will generally not exhibit
singularities as sharp as the N-wave edges.

1. INTRODUCTION

We consider optimal and robust detection and estimation
of aeroacoustic shockwaves generated by supersonic projec-
tiles. This problem arises in military, law enforcement, and
other cases. It is desired to detect the presence of a bullet
or other projectile, and to estimate the parameters of the
shockwave. Detection will be useful in a variety of scenarios
with application in sniper location as well as on vehicles and
aircraft. Of particular interest are robust methods that will
work at moderate SNR in the presence of platform noise.

The shockwave is an “N-shaped” wave emanating in the
form of an acoustic cone trailing the projectile {1]. Letting
A denote the peak amplitude of the shockwave then [2]
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where d, v, and [ are the projectile diameter, velocity, and
length, respectively, ¢ is the velocity of sound in air, and =
is the perpendicular distance from the projectile trajectory
to the sensor. Denoting the length of the N-wave as L, then

Lod (%) ()~ ()4, (2

with A decreasing and L increasing as the shockwave prop-
agates (and dissipates) in the atmosphere. From (1) and
(2) we see that the amplitude and length of the N-wave
depend linearly on the diameter of the projectile, but are
otherwise weakly dependent on its overall shape and ve-
locity. Although somewhat complex in nature when first
formed, the shockwave assumes the N-shape after propa-
gating = 50 projectile diameters [2]. The leading and trail-
ing edges have extremely fast rise and fall times (=~ 100
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nsec), leading to the observed N-wave characteristic. Thus,
the observed shockwave shape is largely independent of the
projectile shape and velocity after a short propagation dis-
tance. This in turn implies that a general purpose detector
can be developed that is applicable to a wide variety of
projectiles.

The N-wave can be parameterized in terms of time of
arrival 7, amplitude A, and length L. An idealized constant
slope N-wave is shown in Figure 1 and described by

feo=af(35), r<e<ren, @)

where

f®)=1-2t, 0<t<1, 4)
is the amplitude and length-normalized signal, and § =
{7, A, L) denotes the parameter vector. Acceptable ranges
for @ are assumed to be known from context, based on (1)
and (2). Next we consider optimal schemes for detecting
f(t) and estimating @ in Gaussian naise.

2. OPTIMAL DETECTION AND

ESTIMATION
Consider the binary hypothesis test
Hyi:r(t) = ft0)+n(t), 0<t<T>L
Ho:r(t) = n(t), (5)

where n(t) is white Gaussian noise with variance No. We
assume that f(t;0) is completely contained in the interval
T. The Bayes optimal decision rule is based on the likelihood

ratio
[, p1(x|0)ws(6)d0 L
Lo T o, (6)
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where wg () is the a priori joint probability density of 8, and
pi(-) is the likelihood function under the ith hypothesis.

We further assume that the unknown parameters in 8 are
independent. This last assumption is not strictly true: A
and L both depend on the parameters in (1). However, we
are assuming the quantities d, v, [, and z are unknown.

Next we consider the form of the optimal detection re-
ceiver. Suppose that L is random with 7 and A known, and
assume a uniform prior on L, so that L ~ U[Lo, L1}, with
0 < Lo < L;. Now,

L -1 /T dL
pr(e) = eo / o {m / r(t) - £t L)]Zdt}——Ll —
™

while under Hg

po(r) = coexp {-_]\-%/ [n(t)]zdt} , (8)
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with co a constant. Defining the signal energy

T 2
B = [ trora= 2, ©
0
and also defining
T
o(L) = f r(®)f(t)dt, (10)
[4]

then we can write

)\(r)z/L)\(ﬂL)w(L)dL
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For the purposes of implementation we partition the uni-
form density for L into a discrete set of equally likely lengths
Li.,i=1,...,M, so that we may replace the integration of
(11) by the summation

A(r) & % > A(r|Ly). (12)

A similar argument for the time of arrival 7 may be ap-
plied, where we take 7 ~ U[0, 71]. For L and 7 random and
assuming A known, then

a0 = [

1 Ly
~E; 24 } dL  dr
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where A(r|7) is given by (11). Partitioning the delays 7 into
an equally likely set 7;, = 1,..., N, then

A(r) ~ — 3 f:)\(ﬂb ) (14)
MN i=1 j=1 n
with _E, 24
AelLom) =esp { L+ ToaD)} . (19)

Note that £y depends on L and A and is therefore not con-
stant from realization to realization under our assumptions.
Thus, in the implementation based on (14) the correction
term —E¢ /N is applied in each branch for normalization.

Finally, consider the effects of A, L, and 7 random. Now
A(r]A) is given by (13), and we note that A(r|A) is max-
imized for any fixed A > 0 if ¢ is maximized. Thus, a
decision may be made by comparing the correlation g to a
threshold, and ¢ provides a uniformly most powerful test
with respect to amplitude A.

Without knowledge of the prior probabilities of H; versus
Hp it is prudent to select the decision threshold Ao via the
Neyman-Pearson criterion so as to maximize the probability
of detection for a fixed probability of false alarm.

An alternative to (14) is the “maximum-likelihood” de-
tector, which is an approximation to 94). This detec-
tor proceeds by taking the maximum of the M paths, as
shown in Figure 2, and corresponds to a bank of matched
filters. The maximum-likelihood detector, or generalized
likelihood-ratio test (GLRT), corresponds to forming the
maximum-likelihood estimates of the parameters and then
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using these in the likelihood-ratio as if they were the true 6.
Thus the detector of Figure 2 is appealing for our problem

because it simultaneously yields estimates # and L. Given #
and L an optimal estimate of A is easily obtained via linear

regression over ¥ <t < ¥ + L. Because Ef can change, a
normalization is required before applying the threshold Ao.
Alternatively, the statistic ¢ can be employed requiring a
separate threshold for each channel, and estimation of A
can be avoided altogether.

3. WAVELET-BASED DETECTION AND
ESTIMATION

The use of wavelets for solving an hypothesis test must be
carefully motivated. Under the assumptions on (5), applica-
tion of an invertible linear transformation such as a wavelet
transform (WT) or Fourier transform does not provide any
benefit. This is because the optimal theory will lead us
to invert the transformation, thus recovering the original
hypothesis test in white Gaussian noise. Two possible mo-
tivations for using wavelets are (i) lower complexity imple-
mentation, and (ii) robust performance when assumptions
are violated. In the case of (i) we are trading off perfor-
mance versus complexity because the use of the WT will
lead to a sub-optimal detector. In the case of (ii) our as-
sumptions may be violated in such a way that an optimal
solution is unknown, including such possibilities as an un-
known additive interference or signal model mismatch.

The continuous wavelet transform (CWT) of f(t) is given
by

fon= [~ (S0 o, e

where s is the scale and () is the basic wavelet. It is in-
teresting to note that the CWT can be reinterpreted as a
filter that is matched to the various scalings s and time of
arrivals 7 of the signal f(¢). In radar the scaling is due to
Doppler shifts in the return signal, and the CWT is equiv-
alent to the wideband ambiguity function. In the present
problem the wavelet ¢ = 1)(t; 7, s) is exactly of the form of
f(t; 7, L) with L playing the role of scale (see (3)). Thus, un-
der our assumptions, finding the maximum of f(s,t) leads
to estimates of L and 7 corresponding to those obtained
in the scheme of Figure 2 (ignoring quantization error).

In practice we compute samples of f(s,t), leading to the
same quantization issues. It may be possible to reduce the
search space over scale, depending on the form of f(t;8). If
dyadic scales are sufficient then fast discrete wavelet trans-
forms (DWT) may be used, and the issue becomes one of
choosing the appropriate (dyadic) scale sampling rate [3].
This last approach is for complexity reduction and is strictly
sub-optimal under the assumptions on (5). Computation of

samples of f(s,t) for arbitrary scales can also be accom-
plished efficiently by employing the chirp z-transform [4].
For the specific problem of shockwave detection we con-
sider a scheme based on the ability of the DWT to charac-
terize the local regularity of signals. It is well known that
wavelets may be used for detecting and characterizing sin-
gularities [5]. This has been applied to edge detection in
images by analysis across scale-space [6]. Here it is desired
to detect a pair of 1-D singularities, the rising and falling
edges of the N-wave. The extremely fast rise and fall times
produce singularities even in the presence of other deter-
ministic interferers, so that singularity-based detection will
be reasonably robust to the presence of such unwanted con-
tributions to the observed signal. Such interference is very
likely in this application, due both to platform noise (e.g.,
vehicle engine noise) and all manner of other sounds pro-
duced in the environment. In addition, for miss distances z
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on the order of meters, the relative SNR with respect to the
random additive noise will be relatively high such that this
sub-optimal approach may be nearly optimal in many sce-
narios. The use of the DWT in this manner reduces the 2-D
matched filter approach into two 1-D estimation problems.
First, 7 is estimated based on the pair of observed singular-
ities: estimates of L (and A) follow easily. This decoupling
of estimation of T and L results in a significant complexity
reduction that depends on the range of L under test.

The particular wavelet of interest here consists of the first
derivative of a smoothing function u(te, given by ¥(t) =
du(t)/dt. It is straightforward to show (e.g., [5])

dus

Fot) = 1) s (s32) () = sm(Frud®, (D)

where u,(t) = (1/s)u(t/s) and * denotes convolution. Thus,

for appropriate choice of u(t), f(s,t) can be interpreted as
a derivative of a local average of f(t) where the degree of
smoothing depends on s. The result is estimation of the
derivative of f(t) at various levels of smoothing (scales). In
[6] Mallat and Zhong developed a DWT based on u(t) being
a cubic spline, and show that finding the local maxima of
the DWT modulus is equivalent to the Canny edge detector.
In using the DWT here the discretization is dyadic in scale
but not in time (shift), which simply corresponds to a filter
bank with no downsampling.

Let sp, n = 1,2,..., denote the dyadic scales of the
DWT. Figure 3 (top) shows a measured shockwave time
series f(t), sampled at 250 KHz. Also shown in Figure 3

are f(sq,t) for the first three scales (n = 1,2, 3). Note that
this DWT is dyadic in scale but not in shift. The time se-
ries f(t) exhibits multipath but is generally at high SNR.

f(s1,t) yields accurate estimates of the time of arrival and
time of departure of the shockwave, but also has multiple
peaks that disguise the presence of the true ones. In E]
an approach for edge detection based on estimation of the
Lipschitz exponent is developed, but this method is highly
susceptible to additive noise. A robust approach is to ana-
lyze across scales, beginning with the highest scale (in prac-
tice seven or eight scales appear sufficient, depending on the
original sampling rate). At the higher scales the smoothing
reduces noise and produces fewer false peaks. With scale s,,
fixed the presence of f(t) will produce two positive peaks
in the time series f(sn,t), whose spacing depends on L and
us(t).

Let f(sn,t:;) and f(sn,t;), t; > ti, denote two values
in the DWT at scale s,. Acceptable peak pairs are se-
lected based on a peak threshold po and the spacing of the
peaks. The most basic test conditions are (i) f(sn,t:) > po,
f(8n,t;) > po, and (ii) t; —t; € [Lo, L1]. When a candidate
peak pair at times (¢;,t;) is detected in the higher scales,
corresponding peaks are found in the lower scales. Finally,
estimates of 7 and 7 + L are chosen in f(s1,t), by selecting
maxima in a neighborhood of f(s1,%:;) and f(s1,t;), where
the neighborhood size depends on L.

Numerous variations of this approach are possible via se-
lection of the thresholds and choice of scales. For example,
a detection can be declared if the majority of scales exhibit
the appropriate peak pair, avoiding scales which may be
contaminated by interference. A simple approach is to use
two scales only, s; and some higher scale 3,,. We illustrate
this below.

4. SIMULATION AND EXPERIMENT

We compare maximum-likelihood (ML) estimation of 7 and
L in additive white Gaussian noise with the DWT approach.
7 and L were varied randomly over 100 realizations for each
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SNR value with 7 € {100, 300] and L € {50, 200]. Each real-
ization was of length 7' = 500. ML estimates were obtained
via the scheme of Figure 2.

The DWT approach was based on f(s1,t) and f(ss,t),
as outlined above. For details of the DWT implementation
see the appendices of [6]. The derivative threshold po was

selected data-adaptively as 60% of the maximum of f(ss,t),
0 < t < T. The first acceptable peak pair (in time) were
uysed. Estimates of 7 and L were taken_as the maxima in
f(s1,t) closest to the peak locations in f(ss,1).

Results are shown in Figure 4, depicting experimental
standard deviation of the estimation error versus SNR, with
SNR defined as E5 /Ny in dB. Note that perfect estimation
(zero error) is possible due to the quantization of the true
7 and L. Also, while the ML approach always yields an
estimate, the DWT method may fail to yield a solution if
the threshold tests fail.

The top of Figure 4 depicts results in white Gaussian
noise. The bottom shows results with an additional inter-
ference made up of four odd harmonics with the fundamen-
tal at f = 0.01 (normalized sampling). The interference
power was 20 dB with respect to the Gaussian noise, and
roughly simulates engine noise. In both cases the simple
DWT detector approaches optimal performance at about
32 dB SNR (E;/No). Experimentally observed SNR is of-
ten significantly beyond this level (see Figure 3), and tests
of the DWT algorithm using this and other experimental
data has shown good results.

Of further interest are DWT algorithms using more than
two scales, comparison with optimal Cramer-Rao estima-
tion bounds, and further experimental results. Also of in-
terest: study of multi-sensor scenarios for determining pro-
jectile direction of arrival, as well as conditions under which
projectile classification is feasible. Results on these issues
will presented elsewhere.
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Figure 1. Ideal shockwave (N-wave) f(t).
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Figure 2. Maximum-likelihood detector in white
Gaussian noise.

Copyright 1997 |IEEE

1000 T T + T T v T
o__J\/WW\Ng\W
1000 " . ) _ L L .
0 500 1000 1500 2000 2500 3000 3500 4000
200 T T T T T T T
S TN W DR X
Ot a ke
200 . . , . : ) )
] 500 1000 1500 2000 2500 3000 3500 4000
1
500 T T T T T T T
0 l h l PSS § e 4 -,
500 . N . . ) A N
0 500 1000 1500 2000 2500 3000 3500 4000
2
500 T T T T T T T
O#WWM'M-M LR W
500 » . . . . . .
0 500 1000 1500 2000 2500 3000 3500 4000
3

Figure 3. Top: measured shockwave time series f(t),
1-3: DWT f(sn,t), n=1,2,3.
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Figure 4. ML (solid) and DWT-based (dashed) es-

timation of 7. (a) white Gaussian noise, (b) plus
simulated engine interference.
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