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ABSTRACT

One common approach to reducing the computational
overhead of the normalized LMS (NLMS) algorithm is
to update a subset of the adaptive filter coefficients.
It is known that the mean square error (MSE) is not
equally sensitive to the variations of the coefficients.
Accordingly, the choice of the coefficients to be updated
becomes crucial. On this basis, we propose an algo-
rithm that belongs to the same family but selects at
each iteration a specific subset of the coefficients that
will result in the largest reduction in the performance
error. The proposed algorithm reduces the complexity
of the NLMS algorithm, as do the current algorithms
from the same family, while maintaining a performance
close to the full update NLMS algorithm specifically for
correlated inputs.

1. INTRODUCTION

Acoustic echo cancellation is a common application of
adaptive filtering. The adaptive acoustic echo canceller
requires several hundred taps in order to achieve sat-
isfactory echo suppression. Even with the use of a
NLMS-based echo canceller, the huge processing power
required to implement such an echo canceller is beyond
the capabilities of current DSP chips. Therefore, de-
signing algorithms with reduced complexity can be ex-
tremely useful in such applications.

Several algorithms were proposed to reduce the com-
putational cost of the NLMS algorithm. Such algo-
rithms include the periodic NLMS algorithm [1}, and
the partial update algorithms [2, 3] where only a prede-
termined subset of the coefficients is updated every it-
eration. Inevitably, the penalty incurred by using these
algorithms is a lower performance, in terms of conver-
gence speed, than the regular NLMS algorithm where
all coefficients are updated. The decrease in conver-
gence speed is proportional to the reduction in com-
plexity and can be sometimes a major drawback in their
implementation in the case of long impulse responses.

The algorithm proposed here attempts to reduce the
complexity of the NLMS algorithm while preserving
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a performance close to the regular NLMS algorithm.
The algorithm is a member of the family of adap-
tive algorithms that updates a portion of their coeffi-
cients at each iteration, but it selects those coefficients
adaptively to achieve the most reduction in the perfor-
mance error. The algorithms in [1, 2, 3] choose those
coefficients each iteration (or block of iterations) in a
pre-specified fixed way. The proposed algorithm adds a
maximum of 2 logz(N)+2; ( N being the adaptive filter
length) comparison operations over the computational
overhead of the algorithms in [2, 3].

2. CURRENT ADAPTIVE ALGORITHMS
WITH PARTIAL COEFFICIENTS UPDATES

Here, we consider two algorithms where only a subset of
the adaptive filter coefficients is updated at each itera-
tion. The first algorithm, namely the sequential NLMS
(SNLMS) algorithm [4], updates M coefficients out of
N coefficients at each iteration. The update procedure
is given by

wi(n) + X (n)x(n)e(n)z(n -i+1),
if(n — i+ 1) mod (N/M) = 0
wi(n) , otherwise

wi(n+1) =

8
where W(n) = [wi(n),..., wy(n)]T is the coefficient
vector, X(n) = [z(n) z(n—1)...2(n — N + 1)]T is the
input data vector, and 4 is the adaptation step size.
This approach was used in [2, p.432] in updating the
taps of the adaptive echo canceller. The complexity
of the algorithm, excluding the overhead of calculating
XT(n)X(n), is N + M + 1 multiplications, N + M
additions, and a single division!. On the other hand,

1Note that XT(n)X(n) can be approximated using the
simple recursion estimate of the power p(n) = Ap(n ~ 1) +
(1 = A)z*(n), 0 < A < 1. This method requires 3 multi-
plications, one addition, and one memory location. An-
other method to calculate p(n) = XT(n)X(n) is using
p(n) = p(n — 1) + 2%(n) — z2(n — N). This method requires
one multiplication, 2 additions, and 2 memory locations.
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the NLMS algorithm requires 2N 4+ 1 multiplications,
2N additions, and one division.

The second algorithm divides the adaptive filter
length into N/M successive blocks, each block has M
coeflicients [3]. At each iteration, one block is updated
and blocks are updated in a sequential manner. The
algorithm is referred to here as the sequential block
NLMS (SBNLMS) algorithm. The complexity of this
algorithm in terms of multiplications and additions is
equivalent to the that of the SNLMS algorithm.

3. PROPOSED GRADIENT-BASED
PARTIAL UPDATE ALGORITHM

For the above two algorithms, the reduction in the
number of arithmetic operations per iteration has been
achieved at the expense of the convergence time of the
algorithms which is lowered to roughly N/M that of the
standard NLMS algorithm. For LMS-type algorithms,
it is generally noted that when updating all coefficients
of the adaptive filter, the contribution due to the er-
ror in some coefficients is small while other coeflicients
have larger error contributions. In other words, the er-
ror function is not equally sensitive to variations in all
coefficients. This is more evident for correlated inputs.
Accordingly, even if “less important” coefficients are
not unupdated at a given iteration, the algorithm per-
formance will be marginally affected. The sensitivity
of the performance error to the individual coefficient at
each iteration depends on two factors: the shape of the
mean-square error (MSE) surface and the location of
that coefficient at that instance relative to the bottom
of the MSE surface. The degree of the sensitivity of the
error function to coefficients variations increases with
the degree of “colour” in the input signal. This can be
easily seen by noting that coloured inputs result in per-
formance surfaces that have elliptical contours. In this
case, the mean square error is extremely sensitive to the
choice of the adaptive filter coefficients to be updated.
This sensitivity is reflected in the steepness of the gra-
dient vector components. Those coefficients with larger
gradient components on the error surface result in con-
siderably larger contributions to the reduction of the
overall mean square error.

Consequently, a simple and direct criterion for the
selection of coefficients to be updated is based on the
magnitude of the corresponding gradient estimate in
the direction of every individual coefficient at a given
iteration. A larger gradient magnitude implies steeper
descent in the direction of that coefficient, and con-
sequently a larger reduction in error when that coef-
ficient is updated. Moreover, when the coefficient is
near its optimum value, the gradient along the direc-
tion of this coefficient will be very small. Therefore,
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not much reduction in error is attained when that coef-
ficient is updated. The gradient estimate in the direc-
tion of the ith coefficient is —2e(n)z(n — i + 1), where
1 <1 < N. Clearly, since all gradient components in-
volve the quantity —2e(n), then the proposed criterion
is to select coefficients associated with the M largest
value of |z(n — i + 1)| for updating. Note that in low
SNR environments, the error e(n) can be very noisy
leading to a noisy gradient estimate that can provide
false information. However, it is clear that the determi-
nation of the subset to be updated does not depend on
e(n) ensuring that the algorithm is not sensitive to the
effect of noise disturbances. The proposed algorithm
is thus stated as follows. At each iteration, M coeffi-
cients out of N are updated. Those M coefficients are
the ones associated with the M largest |z(n — i + 1),
i = 1,..,N, at that iteration. The algorithm update
equation can be written as

wi(n) + me(n)z(n —-i+1),

if ¢ corresponds to one of the first
M maximaof |z(n—i+1)|,i=1,.,N
w;(n) otherwise
2

In terms of multiplications/additions, the proposed al-
gorithm has the same complexity overhead of the two
algorithms described in the previous section.

It should be noted that, at each iteration, a running
sorting procedure in a descending order of jz(n—i+1)],
i =1,.., N is required. The M coefficients that belong
to the first M elements of the sorted vector are up-
dated. In [5], a fast algorithm for running sorting of
a sliding window of arbitrary N elements is proposed.
The algorithm, named SORTLINE, uses the fact that
at each iteration one new sample enters the window and
one old sample is discarded . The algorithm requires,
at most, 2 log,(N)+2 comparison operations per sam-
ple time. Consequently, the proposed partial update
algorithm needs an extra 2 logy(N) + 2 comparisons
in addition to multiplications and additions required
by the SNLMS or SBNLMS algorithm. For large N,
the savings of N — M multiplications and N — M addi-
tions will exceed the additional complexity of 2 log,(N)
comparison operations.

4. SIMULATIONS

w.-(n+1) =

We examine here the acoustic echo cancellation appli-
cation. The echo path is that of an anechoic room of
200 taps, measured at 8KHz sampling rate. The pro-
posed algorithm is compared with the NLMS algorithm
with the update of all N coefficients at every iteration,
the SNLMS algorithm, and the SBNLMS algorithm.
For the proposed algorithm, SNLMS, and SBNLMS,
M = 25 coefficients are updated every iteration. Both
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the SNLMS and SBNLMS are described in section 2.
The algorithms are tested under different input signal
environments: stationary white, stationary correlated,
and nonstationary using a real speech signal.

In the first two examples, perfect modeling of the
echo path is assumed, i.e., N=200. A white noise of
0.0001 variance is added to the desired signal. Results
are obtained by averaging over 100 independent runs.
In the last example, where a real speech is used, the
adaptive filter is chosen to be of length N = 150 (un-
dermodeling of the echo path).

In the first example, a zero-mean white Gaussian sig-
nal of unity variance is used. The full update NLMS,
SBNLMS, SNLMS, and proposed algorithms are used
with the same step size g = 0.5. It is clear from Fig.1
that the proposed algorithm outperforms the SNLMS
and SBNLMS algorithms though the three algorithms
update the same number of taps (M=25) at each iter-
ation. Also, note that the loss in convergence speed of
the proposed algorithm compared to the NLMS algo-
rithm is marginal.

In the second example, the input signal is a highly
correlated one generated by passing a zero-mean white
Gaussian signal with unity variance through the filter
H(z) = 1_1'581_}_,_0‘81,—_5. The step size value of the
NLMS algorithm is g = 0.5. The proposed algorithm,
SBNLMS, and SNLMS algorithms are used with the
step size u = 0.4, which is chosen to achieve the same
steady state MSE of the NLMS algorithm. The su-
periority of the performance of the proposed algorithm
compared to the SBNLMS and SNLMS is obvious from
Fig.2. Also, the performance of the proposed algo-
rithm is still comparable to the NLMS algorithm. The
slow convergence speed of the SBNLMS and SNLMS
algorithm relative to the NLMS algorithm in Fig.1 and
Fig.2 is not surprising, since the convergence speed of
the SBNLMS and SNLMS algorithms is expected to be
8 times slower than the NLMS algorithm. On the other
hand, the proposed algorithm strategy of updating the
portion of the coefficients that leads to the greatest re-
duction in the error at each iteration has minimized
the loss in performance compared to the case when all
coefficients are updated. It can be seen that the im-
provement of the proposed algorithm in this case over
SBLMS and SNLMS algorithms is significantly more
than for the white input. This is due to the shape of
the error surface for coloured inputs where the slope
may vary dramatically from one coefficient to another.

In the last example, a speech signal of a male voice
is used as an input signal. The adaptive filter is used
with 150 taps to achieve a satisfactory echo return loss
enhancement (ERLE) level. The ERLE is defined as

ERLE = 10 log,(

Elei(n)) ) ®)
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All algorithms employ the same step size value p = 1.
Fig.3 illustrates the ability of the proposed algorithm to
operate as well as the NLMS algorithm, and better than
the SBNLMS and SNLMS algorithms in this practical
example. It is to be noted that all coefficients are incre-
mented at each iteration when the NLMS algorithm is
used. For the SBNLMS and SNLMS algorithms, each
coefficient receives one update every fixed number of
samples (150/25 = 6, for this example). However, the
proposed algorithm picks the M (M=25) most “impor-
tant” coefficients at each iteration. Thus, coefficient
update is only performed when it is deemed to provide
“reasonable” reduction in the error.

5. CONCLUSION

In this paper, we presented an adaptive algorithm that
belongs to the family of algorithms that update only a
subset of the adaptive filter coefficients at each itera-
tion. The proposed algorithm selects the “important”
coefficients to achieve the most reduction in error. The
idea is based on the observation that some coefficients
have steeper directions on the error surface than others
and, therefore, make larger contribution in reducing
the error. This case is more evident when the input
signal is correlated. Simulation examples indicate that
the proposed algorithm outperforms the SBNLMS and
SNLMS algorithms and retains close performance to
the full update NLMS algorithm. In terms of multipli-
cations and additions, the proposed algorithm entails
the same complexity as the SBNLMS or SNLMS al-
gorithms. However, it involves, in the worst case, an
additional 2 log,(N) + 2 comparison operations.
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Fig. 1 Comparison of MSE between the full update
NLMS, SBNLMS, SNLMS and proposed algorithm for
white input case.

Fig.2 Comparison of MSE between the full update
NLMS, SBNLMS, SNLMS and proposed algorithm for
correlated input case.
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Fig.3 Comparison of MSE between the full update
NLMS, SBNLMS, SNLMS and proposed algorithm for
speech input case.
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