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ABSTRACT

Past methods for mapping the least-mean-square
(LMS) adaptive finite-impulse-response (FIR) filter
onto parallel and pipelined architectures either in-
troduce delays in the coefficient updates or have
excessive hardware requirements. In this paper,
we describe a pipelined architecture for the LMS
adaptive FIR filter that produces the same out-
put and error signals as would be produced by the
standard LMS adaptive filter architecture without
adaptation delays. Unlike existing architectures for
delayless LMS adaptation, the new architecture’s
throughput and hardware complexity are indepen-
dent of and linear with the filter length, respec-
tively.

1. INTRODUCTION

Advancements in VLSI technology have spurred efforts to
map complex algorithms onto regular architectures with
computations that can be parallelized and/or pipelined. Al-
though it is relatively straightforward to synthesize high-
speed architectures for feedforward-only signal processing
structures such as finite-impulse-response (FIR) filters, it
is considerably more difficult to synthesize similar architec-
tures for feedback structures [1, 2]. A case in point is the
least-mean-square (LMS) adaptive FIR filter [3], in which
the error of the adaptive filter is used to adjust the filter
coefficients in real time. The need for a high-speed architec-
ture for this ubiquitous signal processing system has long
been recognized, as it is used in numerous high-data-rate
systems in communications [4, 5, 6].

Without exception, previously-proposed methods to par-
allelize and/or pipeline the LMS adaptive FIR filter intro-
duce either delays in the coefficient updates [2, 7, 8, 9, 10,
11] or a large hardware overhead [1]. In [7, 8, 9, 10], each
coefficient of the system receives an equal delay in the co-
efficient update, resulting in the delayed LMS adaptive fil-
ter. The delayed LMS algorithm is generalized in [2] to
allow different coefficient delays for both the filter output
computation and the calculation of the coefficient updates.
Alternate algorithms employing a transposed form of the
FIR filter structure are proposed and described in [11], in
which the update delay is different for each LMS adaptive
filter coefficient. Analyses of these delayed adaptation al-
gorithms indicate that the performance of these systems is
inferior to that of the LMS adaptive filter in some cases, and
the performance loss is particularly severe as the amount of
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delay is increased [2, 7, 8, 9, 11]. This loss in performance is
problematic for adaptive FIR filters with hundreds of coef-
ficients, as the update delay usually increases in proportion
to the number of filter coefficients.

A second difficulty in employing LMS adaptive filters
with delayed updates is in choosing the step size to obtain
fast and accurate adaptation behavior. The best step size
choice for these algorithms is a complicated function of the
input statistics and the delays within the adaptation loop
[8, 9]. Step size normalization for the delayed LMS adaptive
filter has been proposed [12]; however, the performance of
the resulting system still depends on the input signal corre-
lation statistics and the adaptation delays. Clearly, it would
be desirable to obtain a low-complexity pipelined architec-
ture whose coefficient updates contain no adaptation delay,
so that normalized LMS adaptation or other variable step
size strategies can be reliably employed.

Recently, a method has been introduced for correcting
the error produced by the delayed LMS adaptive filter so
that standard LMS or normalized LMS adaptation can be
employed [12, 13]. In this method, a correction term is
computed using products of past corrected errors and cer-
tain input signal correlation terms that can be computed
recursively. Extensions of the method to allow delayless
filtered-X LMS adaptation for adaptive control applications
are presented in [14]. It is not clear, however, how the
computation of the correction term in these methods can
be paralleled and/or pipelined. No high-speed architecture
employing these methods has been presented.

In this paper, we describe a pipelined implementation
of the LMS adaptive FIR filter. The implementation ap-
plies the correction term method as described in [13] to a
transpose-form FIR filter structure, where the correction
term is also computed using a transpose-form structure.
The system can be implemented using regularly-connected
processing modules, making it amenable to VLSI implemen-
tation, and the overall complexity is linear in the number
of filter coefficients. The new architecture’s throughput is
always greater than that of existing delayless LMS adaptive
filter architectures. Moreover, its throughput does not de-
pend on the filter length to first order. Simulations verify
the computational equivalence of the new architecture to
that of the standard LMS adaptive filter.

2. THE ARCHITECTURE

The LMS adaptive filter coefficient updates can be de-
scribed in vector form as

W(n+1)
e(n)

W (n) + pe(n)X(n) (1)
d(n) — W7 (n)X(n), 2)
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Fig. 3: The pipelined LMS adaptive filter architecture.

Table 1: Transpose-form algorithm for LMS adaptation.

FEquation xs
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Total (u(n) arbitrary): 5L +1

Comparing (16) and (14), we see that the two equations
have the same form. Therefore, we can use a transpose-form
structure to compute the correction term in (16). More-
over, since ¢(n) is added to the output of the delayed co-
efficient filter, we can use a single transpose-form structure
to compute both the delayed coefficient filter output and
the correction term. Since the correlation terms r;(n) are
delayed within the transpose-form structure, the sth pro-
cessing module implements the update relation given by
(17) at the top of this page, where the time indices for this
equation are analogous to those in (15).

To obtain a causal implementation given the computation
of the correlation terms in (17), we delay the input and
desired response signals by L time samples. Figures 3 and 4
show the set of interconnected modules and the ith module,
respectively, for the pipelined LMS adaptive filter. The set
of equations implemented in the ith module are shown in
(18)-(20) at the top of this page. The value of yr(n — L)
is equal to y(n — L) = W7 (n — L)X(n — L), where W(n —
L) evolves according to the LMS algorithm in (1). Thus,
although the system adapts the coefficients using the LMS
algorithm, the system output is only available after an L-
sample delay. Table 1 depicts the algorithm in vector form,
where we have defined W(n) = [wr-1(n — 1) wr_z2(n —
2) - wo(n—L)]T, R(n) = [rL(n—1) ro—1(n=2) -+ r1(n—
L))", and Y(n) = [y1(n) y2(n) --- yr(n)]7, respectively,
and where the vectors Y(n) and E.(n) contain the first
L — 1 elements of Y(n) and E,(n), respectively. In the
table, we have listed the algorithm with a variable step size

p(n), as this modification does not alter the fundamental
form of the algorithm.
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Fig. 4: A single processing module for a pipelined LMS
adaptive filter architecture.

3. IMPLEMENTATION ISSUES

We now compare the throughput of the pipelined LMS ar-
chitecture with more conventional architectures for delay-
less LMS adaptive filtering. It is well known that the lim-
iting factor in the throughput of the LMS adaptive filter is
the number of additions necessary to form the error signal
[11]. Assuming that all of the multiplies in the conventional
LMS adaptive filter are computed in parallel and that the
step size p is a power-of-two value such that the product
pe(n) can be computed via simple bit shifts, the throughput
of the conventional architecture is given by

1
) 21
2Tmult + (L + l)Tadd ( )
where Tynuie and T,4q are the times necessary to compute a

single multiply and add, respectively. This throughput can
be increased if a binary adder architecture is used, in which

fconu
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Fig. 1: A pipelined delayed LMS adaptive filter architecture.

where the vector W(n) = [wo(n) --- wr-1(n)]T con-
tains the I adaptive filter coeflicients at time n, X(n) =
[z(n) --- z(n—L+1)]7 contains the L input signal samples
in filter memory at time n, d(n) and e(n) are the desired
response and error signals at time n, respectively, and p is
the step size. In contrast, the delayed LMS adaptive filter
is defined as

Wn+1) = Win)+ueln)X(n) (3)
&) = dn)-WT(n-D)X(n), (4

where W(n) = [wo(n) - Wr—1(n)]T and D is an integer
value of delay.
Define the error signal em(n) as

d(n) = WT(m)X(n). (5)
Then, it is shown in [13] that the error signal e(n) = en(n)
can be computed from the error signal with delayed coeffi-

cient values en_p(n) via a correction term c¢(n}) as

en—p(n) — c(n) (6)

D
> ri(n)(nen—i(n - i) )

em(n) =

en(n) =

¢(n)

i=1
= R7(n)Eu(n-1), (®)
where R(n) = [r1(n) r2(n) --- rp(n)]T is a D-dimensional
vector of input signal correlations given by
L1
ri(n) = Zz(n—m)x(n—m—j), (9)
m=0

and Eu(n) = [pen(n) pen_1(n —1) .-+ pen_ppi(n — D+
1)]T is a vector of past errors. The correlation terms ri(n)
can be computed recursively as

ri(n)=rj(n =1)+z(n)z(n — j)—=z(n —L)z(n — L — 5). (10)

Thus, the error signal can be computed using delayed coeffi-
cient values, and the delayless error signal e,(n} can be used
to update the filter coefficients. However, since the update
in (10) is marginally stable, errors in rj(n) due to finite-
precision calculations will grow linearly over time. In such
cases, the value of rj(n) must be periodically re-initialized
to its correct value, or the approximate leaky integrator
update given by

Arj(n —1) + z(n)z(n — 5)
—Xz(n - Lyz(n — L - j), (11)
can be used in place of (10), where 0 € A < 1.

ri(n) =
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Fig. 2: A single processing module for a pipelined delayed
LMS adaptive filter architecture.

To obtain a pipelined implementation of the LMS adap-
tive filter, we first consider a transposed-form version of the
delayed LMS adaptive filter. Figure 1 shows the complete
structure containing L processing modules, and Figure 2
shows the detail of the ith processing module. Also shown
in Figure 2 are the data wavefronts in the pipelined array,
as indicated by the grey cut lines. In this case, the inter-
mediate outputs y;(n) for 1 < i < L are defined as

W(n) = ) Grojn—is(n—its), (12)

J=1
and they can be computed using the relation
() = Fia(r-1)+wr_i(n—iz(n) (13)
with yo(n — 1) = 0. The output of the system is

9i(n) = Y @i(n—L)z(n—i). (19)

1=0

¥(n) =

From (3), the coefficients of the filter at the ith stage can
be updated as

wr—i(n —i+1) = wr_i(n — i) + pe(n — §)z(n — L). (15)

The transpose structure delays these intermediate coeffi-
cient values such that the filter output is given by (14).
The samples z(n) and z(n — L) are passed to every pro-
cessing module; thus, an additional L-length shift register
is needed to store the input signal values for the system.

To develop the pipelined architecture for delayless LMS
adaptation, we comsider the correction term c(n) defined in
(7) for the case D = L. We note that we can write this
correction term as

D ril(n+ L) — L)(we(n —3)).  (16)

i=1

c(n) =
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Fig. 5: Convergence of excess MSE: LMS, delayed LMS
(D = L), and pipelined LMS adaptive ﬁlters, p =28
L =100.

case the throughput is

1
2Tmutt + f10g2 L+ l]Tadd’

Toin (22)

where [log, L + 1] denotes the next largest integer value of
log, L+ 1. The structure of this binary adder is not regular,
however, and is difficult to implement in VLSI.

For the pipelined architecture, we assume an adaptive
noise canceller configuration for which only the error signal
e(n) is of interest. If we set yo(n — 1) = —d(n — 1), the
structure produces the error signal yz(n — L —1) = —e(n —
L —1) directly. From Figure 3, it is seen that the elemental
computation within the structure is a single multiply and
two adds if the bit shift of e(r) by u is ignored, so that the
throughput is given by

1
ipe = = 23
Foir Tnutr + 2T0ad (23)

Unlike the other structures, the new architecture has a
throughput that is independent of the filter length, implying
that LMS adaptive FIR filters with hundreds of filter coef-
ficients can be implemented without a significant decrease
in the sample rate of the system.

Assuming that Tmuit = 27444 for a pipelined multiplier,
the speedups of the new architecture over the conventional
and binary tree adder LMS architectures are

5+ 1L
Spipe/corw = T’ (24)

5+ [1282 I ’ (25)

respectively. Thus, for all filter lengths, the new architec-
ture is faster than the existing architectures. For L = 128,
the new architecture is 3 and 33.2 times as fast as the binary
tree adder and conventional architectures, respectively.

To verify the operation of the proposed architecture, Fig-
ure 5 shows the convergence of the excess mean-squared
error (MSE), defined as E{(e(n) — n(n))?} for the LMS,
delayed LMS (D L), and plpehned LMS adaptive ﬁlters
where rj(n) is as computed in (10) and in (11), respec-
tively, for a L = 100-coeflicient system identification task,
where 7(n) is the observation noise corrupting the desired
response signal and A = 1 — 272, In these simulations, the

Spipe/bin
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input and observation noise signals were zero-mean joinly
Gaussian random processes with variances of 1 and 0.01,
respectively, and the unknown system coeflicients were all
set to unity. In this case, we have chosen p = 2% = 0.0039
for all three algorithms. The LMS and pipelined LMS ar-
chitectures perform similarly for these signals, whereas the
delayed LMS adaptive filter suffers from slower convergence
and a greater level of error in steady-state for this step size
value. Note that the pipelined LMS algorithm’s output is
an exact delayed version of the LMS algorithm’s output,
up to finite precision errors in the two systems. Thus, the
L-sample latency in the pipelined LMS algorithm’s output
has no effect on the overall adaptation behavior of the sys-
tem. In addition the errors introduced via the leaky update
of rj(n) in (11) are negligible.

4. CONCLUSION

In this paper, we have described a pipelined implementation
of the LMS adaptive filter. Unlike existing architectures,
the proposed architecture computes the LMS adaptive fil-
ter output exactly and therefore does not suffer from poor
performance due to adaptation delays. However, the output
of the filter is delayed by L samples, where L is the filter
length. The new architecture is regular, thus making it
amenable to VLSI implementation. Comparisons with ex-
isting delayless LMS adaptive filter architectures show that
the new architecture achieves a higher throughput than ex-
isting architectures for all FIR filter lengths. Simulations
show the equivalence of the new architecture’s adaptation
behavior and that of the conventional LMS adaptive filter.
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