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ABSTRACT

This paper presents a tracking analysis of the LMS
algorithm used in order to identify system variations
modeled by a random walk. We prove that the steady
state properties are strongly related to the input char-
acteristics. The input correlation degrades the perfor-
mances. Consequently, best performances are obtained
for white input. We justify then the coupled adap-
tive predictive structures with system identification in
order to improve classical scheme steady state perfor-
mances.

1. INTRODUCTION

The performance analysis of the LMS algorithm is
concerned with transient state and steady state. For
the estimation of unknown fixed filter, it is well known
that the convergence speed is related to input power
and is inversely proportional to the eigenvalue spread
of the input correlation matrix. When the input is sub-
ject to power variations, algorithms such as Normalized
LMS, Sign LMS (see for example [1][2]) improve tran-
sient performances. When the input is highly corre-
lated, predictive structures are powerfull tools used to
improve classical scheme transient properties ([3]).

In order to propose new adaptive schemes for iden-
tification of time-varying systems, it is necessary to
analyse input influence on the tracking performances
of the classical scheme. However, due to the difficulty
of the steady state analysis, few algorithms are pre-
sented. In this paper, a tracking analysis of the LMS
algorithm, used to identify random walk system vari-
ations is presented. From previous works, we analyse
input power and input correlation effects on the algo-
rithm performances : Normalized Excess Mean Square
Error or misadjustement (M) and Mean Square Devi-
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ation (n). However, with the classical approach, it is
not possible to deduce the input correlation effect on
the optimal tracking performances. The proposed ap-
proach which does not include the assumption of small
step size (such as in [4]) allows us to study the input
correlation effect on the algorithm performances.
Using this approach, we can deduce new adaptive struc-
tures in order to improve the classical identification
scheme performances.

2. CLASSICAL APPROACHES : INPUT
POWER INFLUENCE

2.1. Mathematical formulation

We consider a non stationary linear model which re-
lates the two observed sequences of signal z(k) and
y(k) according to y(k) = F(k)TX(k) + b(k); where
X (k) = [z(k), z(k — 1), ..., z(k — N + )] is the obser-
vation vector. The time variations of the unknown sys-
tem F'(k) are modeled by random walk variations

F(k+1) = F(k)+ Q(k + 1) 1)

where each component w;(k), i = 0..N —1 of Q(k) is a
centered sequence independent of the stationary input
z(k) and the additive output noise b(k). We note P, =
E{z(k)?}, P, = E{b(k)?} and P, = E {w;(k)?},
Vi=0,.,.N-1

The adaptive system H (k) that estimates F'(k) is gov-
erned by the LMS algorithm

H(k +1) = H(k) + pe(k)X (k) 2)

where e(k) = y(k)— H (k)T X (k) is the estimation error
and g > 0 is the step size.

With the standard formulation of the LMS using the
deviation parameter V (k) = H(k) — F(k) and with the
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classical independence assumption between X (k) and
V(k), we obtain

uP, [R;Rv + RvR;] = p’T + p’PyP; R, + P,Ra (3)

Where R, = E { X (k)X (k)" } / P: is the normalized in-
put correlation matrix,

Rg = E{Q(k)Q(k)T} /P, is the normalized system
variations correlation matrix, Ry = E {V(k)V(k)T} is
the unknown covariance matrix of the deviation vector

and T = E {X(k)X (k)T Rv X (k)X (k)T }.

Usually, for small step size, the term u’T is ne-
glected, it yields to the following expressions (see [4])
of the Normalized Excess Mean Square Error (Mis-
adjustement) M = (E {e(k)?} — P;) /Py and of the
Mean Square Deviation n = E {V (k)T V(k)}

M(v) = (4)

v

P, Tr(R:Rv) _ 1 - Né§
2 )

b [ +6TT’(R;1RQ)

o) = Tr(Ry) = 5 | | ®

Where § = NP,P,/P; is the non stationary degree
{[2]) and v = uN P, is the normalized step size.

v

2.2. Input Power Influence

For a given non stationary system, & is proportional
to the input power P;. Equations (4 - 5 ) show that,
as the input power increases as M increases and as
7} decreases. This is illustrated in figure 1 for a two-
tap system. It is interesting to note that the tracking
capabilities deduced from 7 and M are contradictory.
The problem is that 7 describes properly tracking per-
formances even though the only M is a measurable
criterion.

In order to overcome this compromise and in order to
improve tracking performances, Normalized LMS can
can be used for randomly time-varying system identi-
fication when the input is subject to power variations

([8))-

3. PROPOSED APPROACH : INPUT
CORRELATION INFLUENCE

3.1. Classical approaches Insufficiencies

Equation (5) shows that the input correlation affects
n. When the components of Q(k) are independent (Rgq
diagonal), Tr(R;'Rq) > N; the minimum value fmin
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Figure 1: Input Power influence on M and 5 for N =
2, P, = 0.1, independant components of Q(k) (P, =
0.005) and for a white input

of the Mean Square Deviation is then reached for white
imput ’

P, Né
nZn"’=2}fx [V+7] (6)
Consequently, for small step size, white input leads to
lower Mean Square Deviation 5 than for correlated in-
put.

When the components of Q(k) are correlated, we can
demonstrate that, for a first order markovian input (a
correlated input generated from a white noise), optimal
performances are obtained for white input when the
system variations are weakly correlated and for corre-
lated input when the system variations are highly cor-

related ([6]).

However, from equation (4), the misadjustement M
seems to not depend on the input correlation. This
conclusion, true for small step size becomes false for
optimal step size. We must then develop a specific
approach in order to analyse the input correlation effect
on the optimal tracking performances.

3.2. Proposed Approach

Unlike classical approaches, our approach does not use
the assumption of small step size. For gaussian inputs,
equation (3) is rewritten as

N[R;Rv + RvR.] — 2vR.Ry Ry — vR,Tr(R:Rv) (7).

Analytical expression of Ry is difficult, however a set of
linear equations (related to this matricial equation) can
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be solved using symbolic-manipulation software pack-
age [6].

Note that the same approach was used in stationary
context (F'(k) = F) in order to determine the exact
step size mean square stability bound for any filter
length and any correlation statistics ([7]).

We illustrate our approach for a two-tap system
(N = 2). The analytical expressions of M and n are

(V + 26) + (pr + 2Pw6)
M= T ®)
B\ (v+2) +8:75%5 (Tr (R 'Rq) - 2)
77(”) P:L‘ (2 21’) Zp II2 )

Where p, = E {z(k)z(k ~ 1)} /P; and

pu = E{wi(k)w2(k)} / Po.

For white gaussian input (p, = 0) or for small values
of v, we find again classical approach results ([2]).

Figure 2 corresponds to M and 5 for relatively rapid
system variations (§ = 0.1), with the input correlation
coefficient p, = 0.5 and p, = 0.5. The proposed the-
oretical curve (1) is compared to the simulation curve
(2). The curve (3) deduced from previous works, shows
that the theory is in good agreement with the simula-
tions for a small range of v. With the proposed ap-
proach, the range of v is enlarged and the optimum
values of v corresponding to minimum values of M
and 7 are reached exactly.

For higher values of v, the independence assumption
between X (k) and V (k) limits the analysis.

4. JUSTIFICATION OF PREDICTIVE
STRUCTURE

4.1. Best input choice for optimal M

In this section, we propose bounding properties of M
available for any, system length, system correlation and
input correlation.

By taking the trace of both sides of equation (7) and
usmg the following conditions Ap.e > 1 and

B,
mm M < TT'(R Ry Ra:) < Amaz Pb M, where Apin

(resp /\ma,) is the minimum (resp. the maximum)
eigenvalue of the matrix R,, we can deduce that

N§
vt o

2—3%11

M>M = (10)

The minimum value MY of the misadjustement is
reached for white input.
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Figure 2: Comparison between the proposed approach
(%), the classical approach (o) and the simulation re-
sults (-) for /P, = 0.1, 6 = 0.1, p = 0.5 and
pu =05

For a two-tap system, figure (3.a) shows the input cor-
relation effect on the optimal value of M (M) for
three values of p, (p, =0, p, = 0.5 and p, = 0.8). As
expected, figure (3.a) shows that, for any system cor-
relation, the input correlation degradates the Mpiy,.
A proposed solution to improve tracking performances
when the input is correlated, is to apply an input
prewhitening. In a recent work, we demonstrate that
such structure, called ” Adaptive Predictive Structure”
improves significantly tracking performances ([8]).

4.2. Best input choice for optimal 5

The exact determination of the input correlation influ-
ence on 7 is quite difficult for any step size and for any
system characteristics. For a two-tap system, equation
(5) shows that the input correlation and the system
correlation appears in the term Tr(R;1Rg). The con-
clusion announced in paragraph 3.1, for small step size,
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Figure 3: Input Correlation influence on the algorithm
performances for optimal step size, theoretical result
(’—’), simulation result (x : for p, =0, ¢ : for p, = 0.5
and e : for p, = 0.8)

is then generalized for optimal step size.

Figure (3.b) shows that, the optimal value of 5 (7min)
is obtained for white input when the system variations
are weakly correlated (p, < 0.5) and for correlated in-
put when the system variations are highly correlated.
The proposed solution to improve performances when
the system is weakly correlated is to apply an input
prewhitening as it is proposed for the misadjustement
M. However, for higher system correlation, the predic-
tive structure is not adequate, wavelet transform based
adaptive filtering is in that case a powerfull tool ([9]).

5. CONCLUSION

In this paper, we analyse the input characteristics in-
fluence on the tracking capabilities of the LMS algo-
rithm in order to justify the use of adaptive predictive
structure to improve classical scheme performances. To
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overcome the insufficiencies of the classical analysis, we
develop a specific approach for high values of the step
size. We prove that the input correlation degrades per-
formances when the misadjustement M is the criterion
used to measure the performances. This conclusion re-
mains for weakly system variations correlation when
the Mean Square Deviation 7 is analysed. This re-
sult justify the adaptive predictive structure where the
adaptive system identification is coupled with an input
prewhitening.

It is interesting to note that this conclusion related to
steady state performance in a non stationary context
is similar to the conclusion relative to transitory per-
formance in a stationary context.
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