WAVELET TRANSFORM BASED FAST APPROXIMATE FOURIER
TRANSFORM

Haitao Guo and C. Sidney Burrus

Electrical and Computer Engineering Department

Rice University
Houston, TX 77005

ABSTRACT

We propose an algorithm that uses the discrete wavelet
transform (DWT) as a tool to compute the discrete Fourier
transform (DFT). The Cooley-Tukey FFT is shown to be a
special case of the proposed algorithm when the wavelets in
use are trivial. If no intermediate coeflicients are dropped
and no approximations are made, the proposed algorithm
computes the exact result, and its computational complex-
ity is on the same order of the FFT, i.e. O(N log, N). The
main advantage of the proposed algorithm is that the good
time and frequency localization of wavelets can be exploited
to approximate the Fourier transform for many classes of
signals resulting in much less computation. Thus the new
algorithm provides an efficient complexity v.s. accuracy
tradeoff. When approximations are allowed, under certain
sparsity conditions, the algorithm can achieve linear com-
plexity, i.e. O(N). The proposed algorithm also has built-in
noise reduction capability.

1. INTRODUCTION

The discrete Fourier transform (DFT) is probably the most
important computational tool in signal processing. Because
of the characteristics of the basis functions, the DFT has
enormous capacity for the improvement of its arithmetic ef-
ficiency [1]. The classical Cooley-Tukey fast Fourier trans-
form (FFT) algorithm has the complexity of O(N log, N).
The Fourier transform is related to many physical prob-
lems, and can not simply be replaced by other transforms,
e.g. in seismic wave propagation and speech production.
Thus the Fourier transform and its fast algorithm - the
FFT are widely used in many areas including signal pro-
cessing and numerical analysis. Any scheme to speed up
the FFT would be very desirable.

Although the FFT has been studied extensively, there
are still some desired properties that are not provided by
the classical FFT. First of all, pruning is not easy. When
the number of input points or output points are small com-
paring to the length of the DFT, a special technique called
pruning [2] is often used. However, it is often required that
those non-zero input data are grouped together. Classical
FFT pruning algorithms does not work well when the few
non-zero inputs are randomly located. In other words, a
sparse signal does not give rise to a faster algorithm. Also,

This work was supported in part by ARPA, BNR and TI.

Copyright 1997 IEEE

there is no speed v.s. accuracy tradeoff. In not so rare
situations, it is desirable to allow some error in order to
gain the speed. However, this is not so easy in the clas-
sical FFT algorithm. One of the main reasons is that the
twiddle factors in the butterfly operations are unit magni-
tude complex numbers. So all parts of the FFT structure
are of equal importance. It is hard to decide which part
of the FFT structure to omit when error is allowed and
the speed is crucial. In other words, the FFT is a single
speed and single accuracy algorithm. Finally, The classi-
cal FFT does not have built-in noise reduction capability.
Many real world signals are noisy. What people are really
interested in are the DFT of the signals without the noise.
Even if other denoising algorithms are used, the FEF'T re-
quires the same computational complexity on the denoised
signal. The wavelet transform is a powerful new mathemat-
ical tool. The discrete wavelets transform (DWT) is fast —
linear complexity (O(N}). Wavelets are unconditional ba-
sis for many signal spaces [3], so the wavelet coefficients
are maximally sparse. In the frequency domain, wavelets
are related to the constant Q filter banks. The good time
and frequency localization of wavelets could be exploited to
approximate the Fourier transform.

The rest of the paper is organized as follows. Section 2
presents the preliminary results about the FFT and DWT.
The fundamental structures and the necessary notations are
introduced. The main result is presented in Section 3, where
we develop the algorithm that uses the DWT to compute
the discrete Fourier transform. The computational com-
plexity is also investigated. While Section 3 deals with ex-
act computation, Section 4 studies various ways to speed
up the algorithm using approximations. In Section 5, we
briefly discuss the built-in denoising capacity of our algo-
rithm. Finally, we summarize our findings in Section 6.

2. PRELIMINARIES

Review of the Discrete Fourier Transform and FFT
The discrete Fourier transform (DFT) is defined for a
length-N complex data sequence by

N-1
X(k)= Zz(n)e‘”‘”""m, k=0,...

n=0

N-1. (1)

There are several ways to derive the different fast Fourier
transform (FFT) algorithms. [t can be done using index

1973

mapping [1], by matrix factorization, or by polynomial fac-
torization. In this paper, we only discuss the matrix fac-
torization approach, and only discuss the so called radiz-2
decimation in time (DIT) variant of the FFT.

— = -
_J_TELS i
I v
_ELE XX
e XXXX
R EORST
i} e

Figure 1: Last stage of a length-8 radix-2 DIT FFT.

In stead of repeating the derivation of the FFT algo-
rithm. We show the block diagram and matrix factoriza-
tion, in an effort to highlight the basic idea and gain some
insight. The block diagram of the last stage of a length-8
radix-2 DIT FFT is shown in Figure 1. First, the input
data are separated into even and odd groups. Then, each
group goes through a length-4 DFT block. Finally, butter-
fly operations are used to combine the shorter DFTs into
longer DFT.

The detail of the butterfly operations is shown in Fig-
ure 4(a), where Wy = e~ 2™V is called the twiddle factor.
All the twiddle factors are of magnitude one, i.e. on the
unit circle. This is one of the main reasons that there is
no complexity v.s. accuracy tradeoff for the classical FFT.
Suppose some of the twiddle factors had very small mag-
nitude, then the corresponding branches of the butterfly
operations could be dropped (pruned) to reduce complex-
ity while minimizing the error to be introduced. Of course
the error depends on the value of the data to be multiplied
with the twiddle factors. When the value of the data is un-
known, the best way is nevertheless to cutoff the branches
with small twiddle factors.

The computational complexity of the FFT algorithm
can be easily established. Let Crpr{N) be the complexity
for a length-N FFT, we can show

CFFT(N)=O(N)+ZCFFT(N/2), (2)

where O(N) denotes linear complexity. The solution to
Equation 2 is well known,

Crrr(N) = O(Nlog, N). 3)
This is a classical case where the divide and conguer ap-
proach results in very effective solution.

The matrix point of view gives us additional insight. Let
Fy be the Nx N DFT matrix, i.e. Fy(m,n) = e=a2mmn/N

Copyright 1997 |IEEE

(b) Polyphase form.

(a) Direct form.

Figure 2: Building block for the discrete wavelet transform.

where m,n € {0,1,...,N—1}. Let Sy be the N x N even-
odd separation matrix, e.g.

1

Sy = (4)

o O o

o= O
[N el N o]
- O O

Clearly S%S~ = In, where Iy is the N x N identity ma-
trix. Then the DIT FFT is based on the following matrix
factorization,

_ | In2 Twye || Fupe 0
Fu = [Inzz —Twpe 0 Fup Swv. o (5)

where T/, is diagonal matrix with Wi, 1 € {0,1,..., N/2-
1} on the diagonal. We can visualize the above factorization

where we image the real part of DF'T matrices, and the mag-
nitude of the matrices for butterfly operations and even-odd
separations. N is taken to be 128 here.

Review of the Discrete Wavelet Transform

At the heart of the discrete wavelet transform are a
pair of filters h and g — lowpass and highpass respectively.
They have to satisfy a set of constrains [4, 5]. The building
block of the DWT is shown in Figure 2(a). The input data
are first filtered by h and g then downsampled. The same
building block is further iterated on the lowpass outputs.

The computational complexity of the DWT algorithm
can also be easily established. Let Cpwr (V) be the com-
plexity for a length-N DWT. Since after each scale, we only
further operate on half of the output data, we can show

Cowr(N)=O(N)+ Cowr(N/2), (6)
which give rise to the solution
CDWT(N)z O(N) (7)

The operation in Figure 2 can also be expressed in ma-
trix form Wy, e.g. for Haar wavelet,

v2

W:Iaar — 2

(8)

O = O =
1

O = O

O - O

=]

1974

The orthogonality conditions on h and g ensure Wiy Wy =
In. The matrix for multiscale DWT is formed by Wy for
different V. We could further iterate the building block on
some of the highpass outputs. This generalization is called
the wavelet packets [6].

3. FAST FOURIER TRANSFORM VIA
DISCRETE WAVELET TRANSFORM

The Algorithm Development

The key to the fast Fourier transform is the factorization
of Fn into several sparse matrices, and one of the sparse
matrices represents two DFT's of half the length. Similarl to
the DIT FFT, the following matrix factorization has been
found,

_ | Anj2 By Fy;, O W 9

where Anjz, By/2, Cny2, and Dy, are all diagonal matri-
ces. The values on the diagonal of A/, and Cyy; are the
length-N DFT of h, and the values on the diagonal of B y/,
and Dyy; are the length-N DFT of g. We can visualize the
above factorization as

where we image the real part of DF'T matrices, and the
magnitude of the matrices for butterfly operations and the
one-scale DWT using length-16 Daubechies’ wavelets [3].
Clearly we can see that the twiddle factors have non-unit
magnitudes.

) &
o i 2 .
sy
_JE L "/
%9 &
&0
BEINE
_.e A
s 7 =
-) \
. £

Figure 3: Last stage of a length-8 DWT based FFT.

The above factorization suggests a DWT based FFT
algorithm. The block diagram of the last stage of a length-
8 algorithm is shown in Figure 3. Following the length-
8 DWT, the highpass and the lowpass DWT outputs go
through separate length-4 DFT, then they are combined
with butterfly operations. Same scheme in Figure 3 are
iteratively applied to shorter length DFTs to get the full

Copyright 1997 |IEEE

Anja(is1)

CN/z(i, l)
By/2(i, 1)

DN/Q(i, l)
(a) (b)

Figure 4: Butterfly operations (a) in a radix-2 DIT FFT;
(b) in a wavelet transform based FFT.

DWT based FFT algorithm. The final system is equivalent
to a full binary tree wavelet packets transform [6] followed
by modified FFT butterfly operations, where the twiddle
factors are the frequency response of the wavelet filters. The
detail of the butterfly operation is shown in Figure 4(b),
where i € {0,1,...,N/2—1}. Now the twiddle factors are
length-N DFT of h and g.

The classical radix-2 DIT FFT is a special case of the
above algorithm when h = {1, 0] and g = [0, 1]. This can
be seen using the polyphase form as in Figure 2(b). Al-
though they do not satisfy some of the conditions required
for wavelets, they do constitute a legitimate (and trivial)
orthogonal filter bank.

Computational Complexity

For the DWT based FFT algorithm, the computational
complexity is also O(N log, N), since the recursive relation
in Equation 2 is again satisfied. However, the constant ap-
pears before N log, N depends on the wavelet filters used.

4. FAST APPROXIMATE FOURIER
TRANSFORM

Basic Idea

The basic idea of the fast approximate Fourier trans-
form (FAFT) is pruning, i.e. cut off part of the diagram.
Traditionally, when only part of the inputs are non-zero, or
only part of the outputs are required, the part of the FFT
diagram where either the inputs are zero or the outputs are
undesired is pruned {2], so that the computational complex-
ity is reduced. However, the classical pruning algorithm is
quite restrictive, since for majority of the applications, both
the inputs and the outputs are of full length.

The structure of the DWT based FFT algorithm can
be exploited to generalize the classical pruning idea for ar-
bitrary signals. From the input data side, the signals are
made sparse by the wavelet transform [3], thus approxima-
tion can be made to speed up the algorithm by dropping
the insignificant data. In other words, although the input
signal are normally not sparse, DWT creates the sparse in-
puts for the butterfly stages of the FFT. So any scheme to
prune the butterfly stages for the classical FFT can be used
here. Of course, the price we have to pay here is the com-
putational complexity of the DWT operations. In actual
implementation, the wavelets in use have to be carefully
chosen to balance the benefit of the pruning and the price

1975

of the transform. Clearly, the optimal choice depends on
the class of the data we would encounter.

From the transform side, since the twiddle factors of
the new algorithm have decreasing magnitudes, approxi-
mation can be made to speed up the algorithm by pruning
the sections of the algorithm which correspond to the in-
significant twiddle factors. For well defined wavelet filters,
they have well known properties, e.g for Daubechies’ fam-
ily of wavelets, their frequency responses are monotone, and
nearly half of which have magnitude close to zero. It should
be noted that those filters are not designed for frequency
responses. They are designed for flatness at 0 and =. Var-
ious methods can be used to design wavelets or orthogonal
filter banks [7, 8, 5, 4] to achieve better frequency responses.
Again, there is a tradeoff between the good frequency re-
sponse of the longer filters and the higher complexity re-
quired by the longer filters.

Computational Complexity

The wavelet coefficients are mostly sparse, so the in-
put of the shorter DFTs are sparse. If the implementation
scales well with respect to the percentage of the significant
input, e.g. it uses half of the time if only half of the inputs
are significant, then we can further lower the complexity.
Assume for N inputs, aN of them are significant (o < 1),
we have -

CFAFT(N)=O(N)+2aCFAFT(N/2). (10)
For example if o = %, Equation (10) simplifies to
Crarr(N)=O(N)+ Crarr(N/2), (11)

which leads to
Crarr(N) = O(N). (12)

So under above conditions, we have a linear complexity ap-
proximate FFT. Of course, the complexity depends on the
input data, the wavelets we use, the threshold value used
to drop insignificant data, and the threshold value used to
prune the butterfly operations. Good tradeoff need to be
found. Also the implementation would be more complicated
than the classical FFT.

5. NOISE REDUCTION CAPACITY

It has been shown that the thresholding of wavelet coeffi-
cient has near optimal noise reduction property for many
classes of signals {9]. The thresholding scheme used in the
approximation in the proposed FAFT algorithm is the ex-
actly the hard thresholding scheme used to denoise the data.
Soft thresholding can also be easily embedded in the FAFT.
Thus the proposed algorithm also reduces the noise while
doing approximation. If we need to compute the DFT of
noisy signals, the proposed algorithm not only can reduce
the numerical complexity, but also can produce cleaner re-
sults.

6. SUMMARY

In the past, FFT has been used to calculate DWT [4, 5],
which leads to efficient algorithm when filters are infinite

Copyright 1997 IEEE

impulse response (IIR). In this paper, we did just the op-
posite — using DWT to calculate FF'T. We have shown that
when no intermediate coefficients are dropped and no ap-
proximations are made, the proposed algorithm computes
the exact result, and its computational complexity is on the
same order of the FFT, i.e. O(Nlog, N). The advantage
of our algorithm is two fold. From the input data side,
the signals are made sparse by the wavelet transform, thus
approximation can be made to speed up the algorithm by
dropping the insignificant data. From the transform side,
since the twiddle factors of the new algorithm have decreas-
ing magnitudes, approximation can be made to speed up the
algorithm by pruning the section of the algorithm which
corresponds to the insignificant twiddle factors.

In summary, we proposed a fast approximate Fourier
transform algorithm using the wavelet transform. Since
wavelets are the conditional basis of many classes of sig-
nals [3] the algorithm is very efficient and has built-in de-
noising capacity.

Some of our preliminary results have been presented
in [10]. A more detailed and accessible treatment of this
subject and other aspects of the theory and application of
wavelet and wavelet transform will appear in [11].

7. REFERENCES

[1] C. S. Burrus and T. W. Parks. DFT/FFT and Con-
volution Algorithms. John Wiley & Sons, New York,
1985.

[2] H. V. Sorensen and C. S. Burrus. Efficient computa-
tion of the DFT with only a subset of input or out-
put points. [EEFE Transactions on Signal Processing,
41(3):1184-1200, March 1993.

I. Daubechies. Ten Lectures on Wavelets. SIAM,
Philadelphia, PA, 1992. Notes from the 1990 CBMS-

NSF Conference on Wavelets and Applications at Low-
ell, MA.

[4] M. Vetterli and J. Kovacevic. Wavelets and Subband
Coding. Prentice Hall, Englewood Cliffs, NJ, 1995.

[5] P. P. Vaidyanathan. Multirate Systems and Filter
Banks. Prentice Hall, Englewood Cliffs, NJ, 1992.

[6] R. R. Coifman and M. V. Wickerhauser. Entropy-
based algorithms for best basis selection. I[EEE Trans.
Inform. Theory, 38(2):1713-1716, 1992.

[7] J. E. Odegard. Moments, smoothness and optimiza-
tion of wavelet systems. PhD thesis, Rice University,
Houston, TX 77251, USA, May 1996.

[8] 1. W. Selesnick. New Techniques for Digital Filter De-
sign. PhD thesis, Rice University, 1996.

{9] D. L. Donoho. De-noising by soft-thresholding. TEEFE
Trans. Inform. Theory, 41(3):613-627, May 1995.

[10] H. Guo and C. S. Burrus. Fast approximate Fourier
transform via wavelets transform. In SPIE Math.
Imaging: Wavelet Applications in Signal and Image
Processing, volume 2825, Denver, CO, August 1996.

{11] C. S. Burrus, R. A. Gopinath, and H. Guo. Introduc-
tion to Wavelets and the Wavelet Transform. Prentice
Hall, Englewood Cliffs, NJ, 1997.

[3

—

1976

