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ABSTRACT

In this paper, by exploiting the Total Least-Square
(TLS) closed-form solution and using state-space
structure in Krein space, we will show that the
solution of the TLS problems can be computed via
the recursive Kalman filtering algorithm. This makes
it possible to use the TLS for real-time applications.

1. INTRODUCTION

The method of least-square (LS) has been applied in
variety of problems in science and engineering, since
it plays a central role in studying the inconsistency of
the overdetermined system of equations y ~ Hx,
where H is a NxM matrix with N > M, y is a Nx1
and x is a Mx1 vector, respectively. In standard
approach, the LS formulation implicitly assumes the
y is the only term that is subjected to disturbances,
that is, y + v = Hx. However, in many situations,
such as Spectral Estimation, Infinite-Impulse
Response (IIR) Adaptive filtering, one is faced with
the problem in which both H and y are subjected to
noise. And for that reason, the Total Least Squares
(TLS), or Errors-In-Variables has received increasing
attention due to its robustness of handling this
situation.

The main tool to compute the solution of the TLS is
the well-known Singular Value Decomposition
(SVD) {1}, which is not suited for parallel
computation and can not be used for real-time
applications due to expensive computational cost
(ON?) ) and inherently non-recursive operations. In
this paper, by exploiting the TLS closed-form
solution using state-space structure in Krein space,
we will show that the solution of the TLS problems
can be computed via the Kalman filter algorithm. And
since Kalman Filter technique is well-studied for the
last three decades, many results can be directly applied
for the recursive TLS solution, including square-root
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and parallel implementations, especially it can be
used for real-time applications.

2. FORMULATION
2.1 Basic TLS and Its Solution

The solution of the TLS has been known for
sometimes, but it is often credited to Golub and Van
Loan for their modern treatment, and their
development of computationally efficient and
numerically reliable algorithm [1]. The computational
aspects and new algorithms of TLS are well-studied
and documented by Van Huffel [2]. Adopting from
[2], Figure 1 shows the difference between the LS and
the TLS methods. In the LS technique, the estimated
quantity is obtained by projecting the measurements
to the space that is spanned by H ( white-surface in
Figure 1), while in the TLS case, the solution is
obtained by projecting the measurement to an
appropriated space that is spanned by the estimate of
H ( crossed-surface in Figure 1).

Figure 1: The difference between LS and TLS.
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The following review section follows closely from
the presentation in [2]. Mathematically, the solutions
of LS and TLS are formulated as,

LS:
Min Jy~§
yeR" YLSI
subject to j5 € R(H)
TLS: .
et Sl 25751
subject to ¥z ¢ € R(ff)

It can be easily shown [2] that the solution of the
TLS problem has the following form,

£=(n"H- ai,.,,,,z)" ATy W

Note that, if the minimum singular value is zero,
then the solution of the TLS and LS problems are
identical.

2.2 Recursive TLS (RTLS) Solution

By exploiting the state-space structures in Krein
space,

Xy = Fpxy 1 +Gpu, ®
Yo =Hpxy +V,

with appropriated settings on the known Gramian
matrices of {w,, V., X; },

u, By Qnlpm 0 0
<|vul. |lvmi{>x = 0 Ryoum O
Xo X0 0 0 Hvo

In [3], it has been shown that the state estimate of (2)
via Kalman filtering algorithm is equivalent to
solving the following two minimization problems
with indefinite quadratic forms,

Deterministic Least-Squares Problem:

Min[xrl'l"lxr + ( y- Hx)TW"] ( y- Hx)] 3)

P 4
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Stochastic Least-Squares Problem:
Mxin{l'l - KHTI-TIH'K" + K{HI‘IH + w]K‘} @

The solution of (3) and (4) can also be shown to have
an identical form of,

. -1 .
= [rr‘ +H W'IH] H'WYy 6)

Comparing (2) and (3), we can conclude that the
solution of (2) can be computed by setting W as the
covariance of the measurement noise and IT as the
covariance of the state x in the stochastic least-
squares problem with the following state-space
structure,

Xy = Xp_1 ©)
Ya = Hpx, +v,

We can also recognize that the solution of the TLS
(1) is same as the solution of these minimization
problems with the following settings,

MN=-0%, andW =1 (Ta)
or,
N=-1and W = 6% 4] (7b)

The first setting, equation (7a), has been suggested by
[3]. Under this setting, the state vector will have
negative “covariance” matrix. The recursive
construction of the solution of the TLS problem can
be obtained by initializing the Kalman filter algorithm
using (7a). If one knows precisely the minimum
singular value of [ Hy ], then the estimation of the
state vector will be identical to the TLS solution. If an
approximated value of the minimum singular value of
[ Hy ] is used, then one obtains an approximation of
the TLS solution. However, if the approximated value
is greater than the true minimum singular value, the
algorithm will diverge because the coefficient matrix of
(3) is negative-definite . We are proposing the second
setting, equation (7b). Under this setting, W plays the
role of the covariance of the measurement noise in the
stochastic least-squares problem, Gy,,, the minimum
singular value of the partition matrix [H y], can be
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interpreted as the “standard deviation” of the white,
measurement noise. This situation occurs frequently in
using Kalman filtering algorithm with unknown
measurement noise.

In those situations, we have to initialize the
measurement noise variance with an arbitrary positive
constant and estimate it by some means. In the
problem at hand, we estimate this variance Gy,,, by
using the Incremental Condition Estimation (ICE)
algorithm presented in [4], which costs O(M)
operations at each measurement update.

In addition, if the data are known (batch mode) , we can

use ICE to estimate the minimum signular value of
partition matrix [H y], then using Kalman filtering
algorithm with setting (7a) to compute the recursive
solution.

2.3 Applications

The TLS is applicable in solving many signal
processing problems where the LS has been applied
in the past. In this paper, we choose spectral
estimation as a specific application due to its
popularity. To estimate unknown frequencies, we set
up a Forward (or a Forward-Backward) Linear
Prediction equation,

o) -] o)

y-m-1) - s-1)|on)| |5

In this case, the appended data matrix has a form of,

o) - (M)
[H y] = : o
yN-M-1) - y(N)

Denote the row vector of the data matrix at time n as
a, and using QR to update the data matrix,
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Using ICE [4], we can estimate the minimum
singular value of R, and the coefficients can be
computed via Kalman filtering algorithm,

LLHN RN

in = i"_l + )
Opm+1 +a,Ppa,

T
S o L L N
Om+1 +2,Ppa,
3. RESULTS

Two experiments were conducted using the RTLS
algorithm for the problem of spectral estimation.
Two sinusoids are simulated with normalized
frequencies f,=.2 and f,=.25. The number of data, N,
is 40 and the dimension of the weight vector, M, is 5
with varied signal-to-noise ratio of 20 dB and 30 dB.
In the first experiment, we used the setting of
equation (5a) with different values of the
approximated minimum singular values Gy, as
shown in Figure 2. This result confirmed two
important points: (1) The solution of the TLS
solution can be computed exactly by Kalman Filter if
the minimum singular value of G, is known, and
(2), the approximation solution is quite sensitive to
the approximated minimum singular value. In the
second experiment, we used the setting of (5b) and the
ICE algorithm to estimate the minimum singular
value at each time update. The results are shown in
Figure 3. It can be seen that the solution of the TLS
problem using the SVD and Kalman filter algorithm
are almost identical but the computational cost is
reduced greatly using RTLS, in order of O(2NM?), as
shown in Figure 4.

4. CONCLUSION

In this paper, by exploiting the TLS closed-form
solution using state-space structure in Krein space,
we have shown that the solution of the TLS
problems can be computed via the Kalman filtering
algorithm. This RTLS alogorithm composes of two
independent steps. The first step is to compute the
minimum singular value via ICE, which served as
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noise variance estimator. The second step is Kalman
filtering with updated measurement noise variance.
Both QR and Kalman filtering techniques are well-
studied in literature. This makes it possible to apply
the algorithm for real-time applications.
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Figure 2. Sensitivity of approximated

minimum singular value for setting (7a)
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Figure 3. Spectral Estimation using TLS.

a) SNR = 30 dB. b) SNR =20 dB.
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