PARALLEL-RECURSIVE FILTER STRUCTURES FOR THE COMPUTATION
OF DISCRETE TRANSFORMS

Richard J. Kozick and Maurice F. Aburdene

Electrical Engineering Department
Bucknell University, Lewisburg, PA 17837
kozick@bucknell.edu

ABSTRACT

A general approach is presented for implementing dis-
crete transforms as a set of first-order or second-order
recursive digital filters. Clenshaw’s recurrence formu-
lae are used to formulate the second-order filters. The
resulting structure is suitable for efficient implementa-
tion of discrete transforms in VLSI or FPGA circuits.
The general approach is applied to the discrete Legen-
dre transform as an 1illustration.

1. INTRODUCTION

Parallel-recursive algorithms for the computation of for-
ward and inverse discrete transforms have been studied
recently due to their suitability for efficient VLSI im-
plementation. Earlier papers have addressed the im-
plementation of the discrete cosine transform (DCT)
and related trigonometric transforms such as the dis-
crete sine transform, discrete Hartley transform, and
discrete Fourier transform [1]-{7]. In this paper, a gen-
eral framework is developed for the design of parallel-
recursive filter structures for the computation of dis-
crete transforms. Previously-known implementations
for the DCT [5] are time-invariant digital filters and
follow as special cases of the general structure pre-
sented here. In addition, new parallel and efficient
time-varying filter structures are presented for the dis-
crete Legendre transform in which the number of time-
varying filter coefficients is minimized.

The forward transform of a set of N + 1 real-valued
data points y(0),y(1),...,y(N) is defined by

N
Y(n):%Zy(k)Pn(k), n=0,1,...,N, (1)

" k=0
and the inverse transform is defined by

N
y(k) =D Y(n) Pa(k), k=0,1,...,N. (2)

n=0

Copyright 1997 |IEEE

In (1) and (2), the P, (k) are the orthogonal basis vec-
tors for the discrete transform with Y>8_ P, (k) P (k) =
8mnC2. The basis vectors are assumed to be orthogo-
nal to facilitate the application to discrete polynomial
transforms in Section 3. However, the methods de-
scribed in Section 4 are applicable to orthogonal as
well as non-orthogonal transforms.

Section 2 describes first-order and second-order fil-
ter bank structures for computation of discrete trans-
forms. The first-order and second-order filter imple-
mentations are compared, and Clenshaw’s recurrence
formulae are introduced as a tool for designing the
second-order filters. Section 3 presents an analytical
approach for designing a parallel-recursive implemen-
tation of the inverse transform when the basis vectors
P, (k) are orthogonal polynomials. Section 4 describes
a numerical procedure for designing parallel-recursive
structures for forward and inverse discrete transforms
for a wide class of basis vectors.

2. GENERAL FILTER STRUCTURES

Any transform can be implemented with first-order fil-
ters, but in many cases the second-order filter imple-
mentation is more efficient.

2.1. First-Order Filters

A first-order difference equation that computes the for-
ward transform Y (n) in (1) for a particular n is

Y1 = 0
Pr-1+ Pn(k)y(k),
Y(n) = (1/CHyw.

A parallel bank of N+1 first-order filters of the form (3)
are needed to compute the transform values Y (0), ...,
Y(N) from the data values y(0),...,y(N). Note that
the filter coefficients P,(k) vary with the time index
k. Hence implementation of the first-order filter bank

S
ES
!

k=0,....N (3)

1993



requires (N + 1)? memory locations to store the time-
varying coeflicients P,(k), as well as a total of N 41
adders, N + 1 multipliers, and N + 1 delay elements.
The memory requirement (N + 1)? grows rapidly as N
increases. Using a bank of second-order filters requires
twice as many adders, multipliers, and delay elements,
but in many cases the amount of memory required to
store the time-varying filter coefficients is linearly pro-
portional to N. Further, the second-order filters are
time-invariant for many discrete trigonometric trans-
forms [1]-[7], which greatly simplifies the implementa-
tion compared with the time-varying filters in (3). The
remainder of the paper presents an approach for de-
signing second-order filter banks that are more efficient
than first-order filter banks for the computation of dis-
crete transforms.

2.2. Second-Order Filters

Clenshaw’s recurrence formulae [8] provide a general
approach to deriving a second-order filter bank for dis-
crete transform computation. As with the first-order
filters in (3), the forward transform is computed by
applying the data points y(0),...,y(N) serially to the
bank of N +1 recursive digital filters. The transformed
data Y (0),Y(1),...,Y(N) are then available in paral-
lel after N + 1 time steps. The structure of each re-
cursive filter is identical and will be specified below.
The inverse transform in (2) is computed with a sim-
ilar parallel-recursive architecture, except that the in-
put sequence Y (0),...,Y(N) is applied serially to the
filter bank, and and the outputs y(0), ..., y(N) appear
in parallel after N + 1 time steps.

Clenshaw’s recurrence formulae provide a parallel-
recursive algorithm for computing sums of the form
(1) and (2). Clenshaw’s recurrence formulae were used
in [5] to develop parallel-recursive implementations for
the discrete cosine transform (DCT). The approach in
[6] relied on trigonometric identities that are available
for the DCT kernel, so the approach in [5] does not
extend in a straightforward manner to other discrete
transforms. A contribution of this paper is the appli-
cation of the Clenshaw recurrence formulae to a large
class of transforms, and in particular to the discrete
Legendre transform (DLT) [9].

Clenshaw’s recurrence formulae are applied to the
forward transform in (1) as follows. First, a recurrence
relation is required for the basis vectors of the form

Pok+1) = a(k,n)Pa(k) + Bk, n)Palk — 1),
n=0,1,...,N,
k=1,2,...,N—1. (1)

The coefficients a(k,n) and B(k,n) that satisfy (4) for

Copyright 1997 |IEEE

a given set of basis vectors {P,(k)} are generally not
unique and can be chosen in many ways, as will be
described in Sections 3 and 4. Once the «(k,n) and
B(k, n) coefficients are fixed, then a recursive algorithm
for computing Y (n) in (1) is given by [8]

11;_2 = 1[)_1:0
1

Ve T BRI L) [¥r—2 — a(k, n)¢r—1 — y(K)],
k:0,1)"'7N' (5)

The transform value Y (n) = ¢n is computed with the
following definitions:

B(N,n) = Any nonzero value,e.g. 1 (6)

o) = -
Ca

BN +1,n) = IR (8)

Figure 1 contains a signal flow graph for the filter. In
the event that P,(N) =0, then (7) and (8) are not
used, but instead Y (n) is taken at time k = N from
the point in Figure 1 following the —a (N, n) multiplier,
with a(N,n) = B(N,n)P,(N - 1)/C2.

The filter in Figure 1 has time-varying coefficients
when a(k,n) or B(k,n) change with the time index k.
If the o and g coeflicients vary independently with k
and n, then 2(N + 1)2 memory locations are needed
for storage and there is no advantage relative to the
first-order filters in (3). As will be shown in Sections 3
and 4, in many cases the «, # values can be chosen to
satisfy the recursion (4) while only requiring memory
of size proportional to N. Note that a bank of N +
1 second-order filters with the structure in Figure 1
requires 2(N + 1) adders, 2(N + 1) multipliers, and
2(N + 1) delay elements.

A recursive algorithm for the tnverse transform in
(2) is formulated using Clenshaw’s recurrence formulae
in a similar way. Instead of beginning with the recur-
sion over k as in (4), the inverse transform begins with
a recursion over n of the form

Poyi(k) = a(nvk)Pn(k)+ﬂ(n’k)Pn—1(k)7
k=0,1,...,N,
n=12,...,N—1. 9)

Although we have used the same symbols, the coeffi-
cients a, § are generally different in the k-recursion (4)
and the n-recursion (9). Methods for finding o and g
in (9) are considered in Sections 3 and 4. The recur-
sive algorithm for the inverse transform is identical to
the forward transform, except that the roles of k and
n are interchanged. For example, the algorithm for

1994



computing y(k) with transform values Y (0),...,Y(N)
entering serially is as follows.

Y2 = %1 =0
1
Yn = m [Yn-2 — a(n, k)n_1 = Y (n)],
n=0,1,...,N. (10)
Then y(k) = ¢n with the following definitions:
B(N,k) = Any nonzero value, e.g. 1 (11)
_ Prn_1(k)
1

BN +1,k) = B’ (13)

In the event that Py (k) = 0, then (12) and (13) are
not used, but instead y(k) is taken at time n = N from
the point in the filter following the —a (N, k) multiplier,
with a(N, k) = B(N, k) Pn-1(k).

Sections 3 and 4 describe methods for finding the
o, B coefficients that satisfy the recurrence relations (4)
and (9) for the basis vectors. Once the a, § coeflicients
are known, then (5) and (10) are the second-order re-
cursive digital filters that compute the transform.

3. ORTHOGONAL POLYNOMIAL
TRANSFORMS

An analytical approach is available for finding the coef-
ficients for the n-recursion in (9) when the basis vectors
P,(0),...,P,(N) are discrete, orthogonal, n**-order
polynomials. The polynomials can be computed using
the recursive equation

(k—n)Pp(k)—an Poy1(k) = by Pa(k)+cn Pa_1(k) (14)
where a, is chosen so that the left side of (14) has
degree n and then by, ¢, are given by

N

> (k= n)Pa(k) P (k)

k=0

N
en = Y _(k—n)Pu(k)Pa_s(k).

b, =

Comparing {(14) with (9), a, § are identified as

a(n, k) = (_k:%)‘—_b"
B(n, k) = B(n) = -g-’nl.

Note that g is independent of k, so it is denoted by
B(n).! This approach provides closed-form expressions

L At the final time step n = N + 1, 3 generally does vary with
k according to (13).

Copyright 1997 IEEE

for a(n, k) and B(n) whenever the P, (k) are orthogonal
polynomials.

For the discrete Legendre polynomials defined in
[9], the results are

2n+1
= oi(n)az(k)
_ n(N+n+1)
Bln) = (n+1)(N —n) (16)

fork=0,1,...,Nandn =1,2,..., N-1, with a(N, k),
B(N,k), and B(N + 1,k) defined by (11)-(13). Note
that a(n,k) = ai(n)az(k) is separable in n and k,
and the k-dependence is relatively simple with o (k) =
NN-2...,-N+2 —Nfork=0,1,...,N. Each
filter for the inverse DLT computation has the form
shown in Figure 2. The set of N + 1 filters requires
2(N + 1) adders, 3(N + 1) multipliers, and 2(N + 1)
delays. Further, only 4N + 2 memory locations are re-
quired to store the filter coefficients, which for large N
is more efficient than the first-order filter structure.

The forward transform requires a k-recursion of the
form (4). An analytical approach does not seem to be
available that exploits properties of orthogonal poly-
nomials for this case. A general numerical procedure
that is applicable to a wide class of forward and in-
verse discrete transforms is developed in the following
section.

4. GENERAL NUMERICAL PROCEDURE

The a, 3 coefficients that satisfy the recursions (4) for
a given set of basis vectors {P,(k)} can be chosen in
many ways. Indeed, (4) contains (N —1)(N +1) linear
equations with 2(N — 1)(N + 1) variables, so a non-
unique solution exists as long as the condition P,(k +
1) # 0 with P, (k) = P,(k-1) = 0 is avoided. However,
the second-order implementation is efficient only if the
time-varying filter coefficients can be stored in less than
2(N — 1){N + 1) memory locations.

One approach for obtaining efficient second-order
implementations is to constrain the a(k,n), B(k,n) in
some manner, and then solve (4) subject to the con-
straints. One interesting and useful solution of this
type occurs when the P, (k) are the DCT basis vectors,
and the constraints are 8(k,n) = —1. Then the numer-
ical solution of {4) for a(k, n) corresponds exactly with
the time-invariant filter implementation presented in
[6]. As another application of this procedure, the in-
verse DLT implementation (15),(16) results when the
B are constrained to vary only with n and not with
k. Thus in these two instances, known solutions that

1995



1

— () Bk+1Lm % 1 Ym attimek=N
[, O o _ 0
k=0,1..,N
4 77!
- a(k,n)

Q wk—l

z7!

1

© - L/

Figure 1: General second—order filter for computation of forward transform.

1
- ¥n) pin+1) Yn 1 yk) attimen=N
[0, 7o) > o - o
n=201,..,N
/ 7y
(2k - N)e aén) 0] 1//',.-1
Z—]
- 1
© - © wn—Z

Figure 2: Filter for computation of inverse discrete Legendre transform.

were derived analytically are obtained from the numer-
ical procedure with simple linear constraints.

A more general approach is to constrain the time-
varying coefficients to be separable in k and n, i.e.
a(k,n) = ai(k)az(n) and B(k,n) = B1(k)B2(n). The
resulting implementation requires 6 N memory loca-
tions to store the filter coefficients, but the equations
are nonlinear and a solution is not guaranteed.

5. SUMMARY

Clenshaw’s recurrence formulae were used to formulate
filter structures for computation of discrete transforms.
The approach provides an efficient structure for VLSI
and/or FPGAs implementation of discrete transforms
by reducing the number of time-varying coefficients.
Known time-invariant filter structures for the discrete
cosine transform (DCT) are special cases of the general
procedure. A new and parallel time-varying structure
to compute the discrete Legendre transform was pre-
sented.

6. REFERENCES
[1] G. Goertzel, “An algorithm for the evaluation of finite

trigonometric series,” Amer. Math. Monthly, vol. 65, pp.
34-35, 1958.

Copyright 1997 |IEEE

[2] J. Canaris, “A VLSI architecture for the real time com-
putation of discrete trigonometric transforms,” J. VLSI
Stgnal Processing, vol. 5, pp. 95-104, 1993.

[3] L.-P. Chau and W.-C. Siu, “Recursive algorithm for the
discrete cosine transform with general length,” FElect.
Lett., vol. 30, pp. 197-198, 1994.

[4] Z. Wang, G.A. Jullien, and W.C. Miller, “Recursive
algorithms for the forward and inverse discrete cosine
transform with arbitrary length,” IEEFE Sig. Proc. Lett.,
vol. 1, no. 7, pp. 101-102, July 1994.

[5] M.F. Aburdene, J. Zheng, R. Kozick, “Computation
of Discrete Cosine Transform Using Clenshaw’s Recur-
rence Formula,” IEEFE Sig. Proc. Lett., vol. 2, no. 8, pp.
155-156, August 1995.

[6] K.J. Ray Liu and C.-T. Chiu, “Unified paral-
lel lattice structures for time-recursive discrete co-
sine/sine/Hartley transforms,” IEEE Trans. Sig. Proc.,
vol. 41, no. 3, pp. 1357-1363, March 1993.

[7] E. Frantzeskakis, J.S. Baras, K.J. Ray Liu, “Time-
recursive computation and real-time parallel architec-
tures: a framework,” IEEE Trans. Sig. Proc., vol. 43,
no. 11, pp. 2763-2770, Nov. 1995.

[8] W. Press, S.A. Teukolsky, W.T. Vetterling, and B.P.
Flannery, Numerical Recipes in C: The Art of Scien-
tific Computing, Cambridge, UK: Cambridge University
Press, 1992, 2nd ed.

[9] N. Morrison, Introduction to Sequential Smoothing and
Prediction, New York: McGraw-Hill, 1969.

1996



