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ABSTRACT

Block-oriented signal processing techniques have excep-
tional role due to the availability of fast algorithms. How-
ever, if larger data segments are to be evaluated in real-time,
the delay caused by the block-oriented approach is not al-
ways tolerable especially if the response time of our eval-
uating system is also specified. This can be exceptionally
critical if the signal processing is related to feedback loops.
In this paper block-oriented signal processing methods are
combined with recursive ones. This combination reduces
the delay problem caused by the block-oriented fast al-
gorithms and at the same time keeps the computational
complexity on relatively low level. Possibly the most orig-
inal component of the suggested solution is the extension
of given size signal transformer-bank channels (e.g. DFT
channels) toward larger blocks simply via recursive averag-
ing.

1. INTRODUCTION

In this paper the concept of block-recursive filters and filter-
banks is introduced. These filters perform signal processing
in two major consecutive steps. In the first step typically
a conventional block-oriented operation like signal trans-
formation or FIR filtering is executed while in the second
one the previous results are block-recursively updated. This
mechanism is in complete correspondence with the usual re-
cursive schemes only the correcting term is replaced by the
result of a block-oriented operation. If this latter enables
decimation then the updating can be performed at lower
rate.

The motivation to introduce such schemes is on one hand
the possible applicability of fast algorithms while on the
other the availability of partial results or estimates in case
of long or possibly infinite input data sequences.

As a simple example consider the case of discrete Fourier
transformation (DFT). For its evaluation fast algorithms
(FFTs) are available. If we apply the FFT e.g. for two
consecutive blocks of 1K input data then, by taking the
average of the corresponding values, the DFT channels will
represent every second channel of a 2K DFT. By recursive
averaging this can be extended arbitrarily, obviously the
number of the DFT channels will equal the initial block
size. With proper frequency transposition technique we can
operate FFTs parallelly, and have more DFT channels. By
two parallel 1K FFTs we can calculate in the first step a
signal transformation similar to a 2K DFT with smaller
accuracy (that of the 1K DFT) while after processing the
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second block and averaging the complete 2K DFT will be
available. With such and similar techniques the further
processing of the data using their approximate frequency
domain representation can start earlier and the not always
tolerable side-effects of processing delay can be reduced.

The paper is organized as follows: In Section 2 first the
block-recursive linear and exponential averagers are intro-
duced. It is shown that there is complete formal corre-
spondence with the standard averaging algorithms. This
is followed by the derivation of the sliding block-averager.
As a next step these averager schemes are generalized to-
ward signal transformations and filter-banks. In Section 3
illustrative examples show the application of the suggested
methods.

2. BLOCK-RECURSIVE AVERAGERS

In this Section the standard algorithms for recursive aver-
aging are extended for data-blocks as single elements.

To illustrate the key steps first the block-recursive linear
averaging will be introduced. For an input sequence z(n),

n =1,2, ..., the recursive linear averaging can be expressed
as
n—1 1
= yn-1)+-z(n-1) . 1
y(n) = "= y(n - 1) + - a(n— 1) )

For n > N the "block-oriented” linear averaging has the

form of
N

1
Xn-N) =5 kzlx(n_k)’ 2)
while the block-recursive average can be written as

n—N
n
If (3) is evaluated only in every Nth step, i.e. it is max-

imally decimated, then we can replace (3) with n = mN,
m =12, ..., by

=" ym-M+ S x@-N) . @)

y(mN) = =2 yf(m — DN] + - X[m - )N] , (4

or simply
ym) =2l ym -1+ = X(m-1)  (5)
m m
where m stands as block identifier. Note the formal corre-
spondence with (1).

If the block identifier m in equation (5) is replaced by
a constant ) > 1 then an exponential averaging effect is
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achieved. This change makes the above block-oriented fil-
ter time-invariant and thus a frequency-domain character-
ization is also possible. In many practical applications ex-
ponential averaging provides the best compromise if both
the noise reduction and the signal tracking capabilities are
important. This is valid in our case, as well, however, in
this paper only the linear and the sliding averagers are in-
vestigated because they can be used directly to extend the
size of certain signal transformation channels.

A similar development can be provided for the sliding-
window averagers. The recursive form of this algorithm is
given for a block size of N by

ym) =y(n -1+ lzn =) ~s(n =N =1] . (6)

If in (6) the input samples are replaced by preprocessed
data, e.g. as in (2), then a block-recursive form is also
possible:

y(n)=y(n-N)+[X(n-N)-X(n-2N)] (7)

which, however, has no practical meaning, since it gives
back (2). But if the window size is integer multiple of N,
e.g. M N, then the form

1
y(n) =y(n—N)+ 45 [X(n = N) = X(n~ (M +1)N)] (8)
has real importance. If (8) is evaluated only in every Nth
step, i.e. it is maximally decimated, then we can replace
(8) with n = mN, m =1,2, ..., by
y(mN) = y[(m - 1)N] + (©)
+ 37 [X((m = 1)N) - X((m - M - 1)N)] ,
or simply
1
y(m) = y(m—1) + 3= [X(m = 1) = X(m ~ M - 1)] , (10)

where m stands as block identifier. Note the formal corre-
spondence with (6).
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Figure 1. Block-recursive linear averaging signal
processing scheme, n = mN

The generalization of these averaging schemes to sig-
nal transformations and/or filter-banks is straightforward.
Only (2) should be replaced by the corresponding ”block-
oriented” operation. Figure 1 shows the block diagram of
the linear averaging scheme. This is valid also for the ex-
ponential averaging except m must be replaced by . On
Figure 2 the sliding-window averager is presented. These
frameworks can incorporate a variety of possible transfor-
mations and corresponding filter-banks which permit dec-
imation by the block-size. Standard references, e.g. [1]
provide the necessary theoretical and practical background.
The idea of transform-domain signal processing proved to
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Figure 2. Block-recursive sliding-window averager
scheme, n = mN, window-size: MN

be very efficient especially in adaptive filtering (see e.g.
[2]). The contribution of this paper is directly applicable
for the majority of these intensively cited algorithms. The
most important practical advantage here compared to other
methods is the early availability of rough estimates which
can orientate in making decisions concerning further pro-
cessing. The multiple-block sliding-window technique can
be mentioned as a very characteristic algorithm of the pro-
posed family. For this the computational complexity fig-
ures are also advantageous since using conventional meth-
ods to evaluate in ”block-sliding-window” mode the trans-
form of a block of M N samples would require M times an
(MN)*(MN) transformation, while the block-recursive so-
lution calculates only for the last input block of N samples,
i.e. M times an (M N) % (N) "transformation”.

As block-oriented preprocessing the DFT is the most
widely used transformation for its fast algorithms (FFTs)
and relatively easy interpretation. The above schemes can
be operated for every "channel” of the DFT and after av-
eraging this will correspond to the channel of a larger scale
DFT. If linear averager is applied this scale equals mN while
for sliding averager this figure is M N. The number of chan-
nels obviously remains N unless further parallel DFTs are
applied. These additional DFTs have to locate their chan-
nel to the positions not covered by the existing channels.
For the case where M = 2, i.e. only one additional parallel
DFT is needed, where this positioning can be solved with
the so-called complementary DFT which is generated using
the Nth roots of -1. This DFT locates its channels into the
positions 7/N, 3 /N, etc. For M > 2 proper frequency
transposition techniques must be applied. If e.g. M = 4
then the full DFT will be of size 4N and four N-point DFTs
(working on complex data) are to be used. The first DFT
is responsible for the channels in positions 0, 8 7/4N, etc.
The second DFT should cover the 2 n/4N, 10 n /4N, etc.,
the third the 4 /4N, 12 n/4N, etc, and finally the fourth
the 6 w/4N, 14 w /4N, etc. positions, respectively. The first
DFT does not need extra frequency transposition. The sec-
ond and the fourth process complex input data coming from
a complex modulator which multiplies the input samples by
eI /4N and e9™/4N | respectively. The third DFT should
be a complementary DFT.

It is obvious from the above development that if a full
DFT is required the sliding-window DFT must be preferred
otherwise the number of the parallel channels should grow
with m.

The majority of the transform-domain signal processing
methods prefer the DFT to other possible transformations.
However, there are certain applications where other orthog-
onal transformations can also be utilized possibly with much
better overall performance. A further aspect of practical
interest can be the end-to-end delay of the block-oriented
processing. The time-recursive transformation algorithms
described e.g. in [3] and [4] are sliding-window transforma-
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Figure 3. 256-channel DFT of a single sinusoid with
N =64, m = 1,2, 3,4, respectively

tions, i.e. filter-banks providing transform domain repre-
sentation of the last input data block in every step. Decima-
tion is not "inherent” as it is the case if the transformation
is considered as a serial to parallel conversion, therefore the
processing rate can be either the input rate, the maximally
decimated one, or any other in between. These techniques
are not fast algorithms, however, ”produce” less delay as
those block-oriented algorithms which start working only
after the arrival of the complete input data block.

Very recently a fast polyphase filter-bank family has been
reported [5] which if maximally decimated has the same
computational complexity as the fast transforms and addi-
tionally provides a uniform processing load along time.
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Figure 4. 256-channel DFT of a single sinusoid plus
noise. N =64, m = 1,2, 8, 16, respectively

This approach seems to be advantageous if the end-to-end
delay is to be minimized. The applicability of this approach
to certain dedicated measurement problems has also been
investigated [6].

3. ILLUSTRATIVE EXAMPLES

In the first example a 256-channel DFT is calculated recur-
sively with N = 64 for m = 1,2,3,4. The input sequence
applied was
_ m(N + 0.5)n
z(n) = cos ( 5N ) . (11)
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This single sinusoid is just in the middle between two
measuring channels. The MATLAB simulations after pro-
cessing the first, second, etc. blocks are given on Figure
3.

In the second example a 256-channel DFT is calculated
recursively with N = 64 for m = 1,2,8,16. The input
sequence was

z(n) = cos (?) +rand — 0.5, (12)

where rand stands for a random number generated by
MATLAB between 0 and 1. The sinusoid is located ex-
actly to a DFT channel position. The simulation results for
m = 1,2,8 and 16 are given on Figure 4. The improvement
in resolution and noise reduction is remarkable.

In the third example a 256-channel DFT is calculated re-
cursively with N = 64 for m = 1,2, 4,8. The input sequence
applied was

z(n) = cos (w

i.e. the single sinusoid of the first example plus the random
sequence. The simulation results for m = 1, 2,4, 8 are given
on Figure 5. On the first three diagrams the improvements
can be detected. On the last diagram the sinusoid is miss-
ing, since for m = 8 an integer number of complete periods
are considered.

)+rmm—05, (13)

4. CONCLUSIONS

In this paper the concept of block-recursive filters and filter-
banks has been introduced. The combination of block-
oriented and therefore typically fast algorithms with simple
recursive averagers may improve on one hand the accuracy
and/or resolution while on the other with the early avail-
ability of some rough estimates may reduce the side-effects
of the delay caused by the block-oriented approach itself.
The reduction of the delay is of real importance in appli-
cations where the response time is also specified. The idea
of block-recursive filters and filter-banks can be extended
toward higher-order averagers and other filtering effects, as
well.
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Figure 5. 256-channel DFT of a single sinusoid plus
noise. N =64, m =1,2 4 8, respectively
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