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Abstract— A method for the Polynomial Wigner-Ville
distributions realization, in the case of multicomponent
signals, is presented. It is based on the author’s recently
proposed S-method. Using this method one may, the-
oretically, get the sum of the Polynomial Wigner-Ville
distributions of each component separately. Architecture
for the Polynomial Wigner-Ville distributions realization,
starting from the short time Fourier transform, is given.
Method is illustrated on a numerical example.

I. INTRODUCTION

Out of the general Cohen class of quadratic shift covariant
distributions, the Wigner distribution (WD) is the only one
(with signal independent kernel) which produces the ideal
concentration along instantaneous frequency for the linear
frequency modulated signals [4], [6]. In order to improve the
concentration, when the instantaneous frequency is a poly-
nomial function of time, the Polynomial Wigner-Ville dis-
tributions (PWVD) are proposed by Boashash et all., [1],
[2]. Since, these distributions belong to the class of higher
order time-varying spectra, they suffer from very emphatic
cross-term effects, what makes their application to the mul-
ticomponent signals very unsuitable. In this paper we will
show that the recently proposed S-method [6], [7], [10], [11],
may be efficiently used for the reduction (removal) of the
cross-terms in the PWVD of multicomponent signals. The-
oretically, we get a sum of the PWVD of each component
separately, what is exactly that we achieved in the example
presented in the paper.

II. REVIEW OF THE S-METHOD

The S-method has been derived from the analysis of the
WD in the case of multicomponent signals. In this case the
WD produces very emphatic cross-terms which may even
completely mask the auto-terms and make this distribution
useless for analysis. This was the reason why many other
quadratic distributions had been introduced (Choi-Williams,
Zao-Atlas-Marks, Born-Jordan, Butterworth...). Common
for all of these distributions is to reduce cross-terms and other
interferences, at the same time satisfying as many desired
properties as possible. But, the cross-term reduction inher-
ently leads to the auto-terms degradation, [14]. In order to
preserve the auto-terms quality, as high as in the Wigner
distribution, and at the same time to reduce cross-terms, the
S-method has been introduced [13]:

SM(t,w) = / P(O)STFT(t,w+0)STFT‘(t,w—0)‘fr—o. )
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Using this method one may obtain the auto-terms quality
as in the Wigner distribution, eliminating (reducing) cross-
terms in a numerically very efficient way (more efficient than
the Wigner distribution realization). The S-method real-
ization is based on a direct application of the short time
Fourier transform (STFT). Frequency domain P(6) controls
the cross-terms reduction. The S-method belongs to the gen-
eral class of smoothed pseudo Wigner distributions (SPWD)
- Cohen class of distributions. Its kernels in (7,8) and (r,t)
domain are given by

c(r,0) = P(6/2) 39 Awu(r,0)/7c
p(r,t) = 2p(2)wit + 7/2)w(t — 7/2)

respectively [14]. Let us emphasize that the S-method is a
member of the general SPWD class, and not just an alter-
native way of writing distributions from this class. While
each of the above mentioned distributions (Choi- Williams,
Zao-Atlas-Marks, Born-Jordan, Butterworth...) belongs to
the SPWD, none of them can be written in form (1).

Discrete form of the S-method, for a rectangular window
P(8), is given by:

SM(n, k) = SPEC(n, k)+
La
+2 3 Re {STFT(n, k +i)STFT*(n, k ~ 1)} @

=1

Note that for Ly = 0 we get the spectrogram, while Ly =
N/2 produces the pseudo WD. Number of terms Lq may
be also signal dependent. The signal dependent form of S-
method may be also considered in the following way: (a)
signal components are separated on the basis of its STFT; (b)
the WD of each component is calculated separately, within its
frequency range, using (2). One such realization is presented
in [9].

S-METHOD APPLICATIONS: (I) Multidimensional
form of the S-method is presented in [16]; (II) Application to
the time-scale distributions is described in [6], [5]; (III) Im-
plementation of the cross-terms free higher order L-Wigner
distributions, using this method, is given in [6), [7], [10], [15];
(IV) Very highly concentrated distributions, that may satisfy
the marginal conditions [20], are implemented using the S-
method in [21], [22]; (V) Cross-terms free form of the Wigner
bispectrum and other Wigner higher order spectra are con-
sidered in [18], [19]. In the next section an application on
the cross-terms free (reduced) realization of the PWVD is
presented. Further details about the S-method itself may be
also found in [6], [7], [10], [11], [14], [16], [17), [21].
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I11. PWVD DEFINITION AND METHOD
DERIVATION

Polynomial Wigner-Ville distributions are derived from
the condition that the distribution of a frequency modulated
signal z(t) = Aexp(¢(t)), having polynomial phase func-

P ,
tion ¢(t) = ) ait*, is equal to the ideally concentrated one
=0
We(t,w) = 2x6(w — ¢'(w)). It has been shown [1], [2] that
such a distribution may be obtained as a Fourier transform

af2
of the polynomial kernel K.(t,7) = [] =z (t+ckr), with
k=—gq/f2
respect to 7:
* a2
Wa(t,w) = / H 2% (t + cxr)e M dr (3)

—oo k=—gq/f2

where ¢ > pis an even number. Coefficients b; and cx should
be determined, for a given p and ¢ so that the ideal distribu-
tion is achieved (bo = 0). ’

In practical and numerical applications, only the PWVD
of order ¢ = 4 has been used, so we will, without loss of gen-
erality, demonstrate the realization procedure on this distri-
bution, since the same technique may be applied to any order
distribution. The PWVD with ¢ = 4 is defined by, [1]:

W (t,w) = }o z2(t + 0.6757)z*2(t — 0.6757) (4

oo '
z*(t +0.857)z(t — 0.857)e ™7« dr.

Rewrite distribution (4) in a frequency scaled form

W)= [ FerPete-n

*(t+ AZ)z(t — A )e i35 7dr

where A = 0.85/1.35. The multilinear kernel of the PWVD
creates a multiplicity of cross-terms. For example, if we have
only a two-component signal, the number of cross terms in
(4) is 13. This illustrates the unapplicability of the original
definition for the processing of multicomponent signals. In
order to present a procedure for the efficient PWVD realiza-
tion in the case of multicomponent signals, note that (3) may
be expressed as a convolution of the L-Wigner distribution
(with L = 2), [8], [10], and a scaled Wigner distribution:

Walt,w') = ﬁ; LW Da(t,0') % WD, (')  (6)

where:
LWD,(t,w) = / 2t + i—)z'z(t - E)e_j“"dr,
WD, (t,w) = / z‘(t+A%).’c(t— A-;:)e'j‘"dr.
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Fig. 2. INustration of the windowed convolution in the PWVD of
a two-component signal.

A block schema for the PWVD realization, starting from
the signal, via STFT, Wigner distribution, and L-Wigner dis-
tribution is shown in Fig.1. Since we have already described
the method for the cross-terms free (cross-terms reduced)
realization of the Wigner distribution and L-Wigner distri-
bution ([6], {7], [10], [11] and Sec.II), the only remaining step
is to realize the convolution in (6} so that it does not intro-
duce any additional cross term, as well as produces the auto-
terms at their natural positions. In order to examine the
convolution in (6), let us consider a two-component signal at
an instant ¢, whose WD and LWD are shown in Fig.2. It is
obvious that if an auto-term exists at and around the instan-
taneous frequency wi, it will be placed in LW D2 (t,w'} at and
around the same frequency w;. This auto-term is located in
WD ,(t,w') at and around —Aw;. Thus, in order to calculate
We(t,w') at a given frequency w' we should calculate convolu-
tion (6) using only an interval around w' in LW D (t,w') and
using an interval around —Aw' in WD, (¢,w’), Fig.2. Theo-
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retically, this interval should be greater or equal to the auto-
term width and less than the distance between auto-terms.
But, in practical realizations we usually a priori assume its
value. Note, if window P(#) is too wide, the cross-terms will
start appearing, while too narrow window will degrade auto-
terms with respect to their original PWVD form (recently
we derived a technique for variable and self adaptive window
P(8) width, that may be applied to this case in a straight-
forward manner, [9], [21], [22]). Of course, the position of
the convolution value (obtained through a window P(6)) is
kept at the position of w’ in LW D;(t,w’), since this is a true
position of the auto-term in the non-scaled frequency axis
w. This way, the auto-terms of the PWVD, at their natural
positions are obtained.

In the discrete implementation of the above procedure, the
only problem that remains is the evaluation of WD , (¢,w’)
on the discrete set of points on frequency axis, w' = —kAw'.
Since WD, (t,w') is nothing but a scaled and reversed ver-
sion of WD(t,w'), its values at —kAw' are the values of
WD(t,w') at kAw’/A. But, these points do not correspond
to any sample along frequency axis. Thus, the interpolation
has to be done (one way of doing it is in an appropriate zero
padding of the signal, as indicated in [1]). A discrete form of
convolution (6), including window P(f) and the above con-
siderations, is:

P
Wa(n,k)= Y P()LWDs(n, k +i)WD(n,k +[i/A]) (7)
i=—P

where P is the width of P(6) in the discrete domain, while
[i/A] is the nearest integer to ¢/A. The terms in summation
in (7), when k+1 or k+[i/A] is outside the basic period, are
considered as being zero, in order to avoid possible aliasing.
Architecture for the hardware (or software) implementation
of the cross-term free (reduced) PWVD may be easily done
according to (7) and using the systems for the cross-terms
free realizations of the WD and LWD that are presented in
[7], [9], [10}, [11], [13]. It is shown in Fig.3.

1Iv. NUMERICAL EXAMPLE

Consider a multicomponent signal, with two real FM sig-
nals,
z(t) = cos(50t° /3 + 75t) + cos(30t |t] + 265¢)  (8)
within the interval —1 < t < 1. Signal is sampled at 2/N,
with N = 256. In the realization of the PWVD, an equiva-
lent Hanning window w(7) is used, i.e., signal at the input is
multiplied by w'/®(r). As in [1] the length of w(r) is assumed
over the entire considered time interval (T = 2). Although, a
narrower window would produce more concentrated distribu-
tion, we used this width in order to emphasize the artifacts
and their reduction by the Polynomial distributions. Rect-
angular windows P(8) are used in all convolutions: in the
WD of the width Wp = 357 (in the analog domain), while
in the LWD and PWVD (since the auto term widths are sig-
nificantly reduced as compared to the ones in the STFT) the
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Fig. 4. a) Spectrogram, b} S-method, c) Polynomial Wigner-Ville
distribution realizaed using the S-method.

window P(6) width was Wp = 17.5w. For the reasons de-
scribed above, an interpolation with factor 4 is used, i.e., sig-
nal is zero padded up to 4N. Note that the signal sampling
is done according to the Nyquist rate, i.e., twice less than
it should be in the ”ordinary” Wigner distribution, while
the length of sequence for the FFT calculations, including
zero padding, is only twice longer. Also, since the cross-term
effects appearing between positive and negative frequencies
will be eliminated (reduced) in the same way as the other
cross-terms, there is no need for the analytic signal calcula-
tion. The results are presented in Fig.4. The cross-term free
PWVD, highly concentrated at the instantaneous frequency
(not only in the polynomial phase component, but in the
non-polynomial FM component, as well) is shown in Fig.4c.
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