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ABSTRACT

In this paper we derive perfect reconstruction (PR) condi-
tions for oversampled cosine-modulated filter banks. The
results can be regarded as a generalization of the known
work for critical subsampling. We show that in the over-
sampled case we gain some additional degree of freedom,
which can be exploited in the filter design process. This
leads to PR prototypes with stopband attenuations being
much higher than in the critically subsampled PR case. The
filters designed as PR filters for the oversampled case can
also serve as prototypes for critically subsampled cosine-
modulated pseudo QMF banks.

1. INTRODUCTION

Applications of oversampled filter banks can be found in
those areas of signal processing where one is interested in
making modifications to signals in certain frequency bands.
Examples are the simulation of room acoustics by filtering
in subbands, noise reduction in the spectral domain, and
equalization via fixed or dynamic (i.e. time varying) filter-
ing of subband signals. On the other hand, critically sub-
sampled filter banks are very attractive for subband coding,
because they lead to a minimum number of transmitted co-
efficients. But they are not useful, if we simply want to
implement some linear filtering by introducing gain factors
in the subbands, because the main aliasing components will
not cancel at the output.

Recently, perfect reconstruction (PR) conditions for
oversampled DFT filter banks have been derived, and ge-
neral relations between oversampled filter banks and frame
theory have been investigated [1-3]. In this paper we con-
sider PR conditions for oversampled cosine-modulated filter
banks, because due to the real-valued subband signals, these
filter banks are more suitable for spectral modification than
oversampled DFT filter banks.

2. POLYPHASE REPRESENTATION

The analysis polyphase matrix of a filter bank is defined as

[ED (2)s; = Hij(2), k=0,...,M =1, §=0,...,N—1,
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where the polyphase components Hy;(z) of the k-th analysis
filter hy(n) are given as

o0

Hyj(2)= ) (N +3) 27"

{=~o00

M denotes the number of subbands and NV the subsampling
factor in each subband. The oversampling ratio L = M/N
is restricted to be an integer.

For critical subsampling we obtain a quadratic
polyphase matrix E?(z) of size M x M. The polyphase
analysis filter bank corresponding to this case is depicted
in Figure 1(a) for M = 4. In the oversampled case the
polyphase matrix EX)(2) has a rectangular shape of size
M x N. The corresponding polyphase analysis filter bank
is shown in Figure 1(b) for M =4 and N =2,

EM(2) E@)(z)

(@ (b)

Figure 1: Polyphase analysis filter bank (M = 4): (a) Crit-
ically subsampled, (b) oversampled by factor 2.

Let us consider a polyphase matrix E()(z) for the crit-
ically sampled case (L = 1). When we now increase the
subband sampling rate by a factor L > 2, the new analysis
polyphase matrix E()(2) can be obtained according to

E®(z) = EV(2") - S(2) 1)
with S(2) = [In, 2z~ Iy, 2~ 2Ly, -, 2~ EDIN]T € RM*V,
I~ denoting the V x N identity matrix.

3. COSINE-MODULATED FILTER BANKS
WITH ARBITRARY SUBSAMPLING RATE

We consider cosine-modulated filter banks where the analy-
sis and synthesis filters hx(n) and fx(n), resp., are derived
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from a linear-phase prototype p(n) according to

hi(n) = 2p(n)cos [% (k + %) (n - Lp; 1)+ (—l)kg] ,
fi(n) = hi(Lp —n-1),

andn=0,...,L,—1, k=0,...,M — 1. We restrict us to
even M and prototype lengths of L, = 2mM, m € N.

8.1. Perfect Reconstruction Conditions for the
Critically Sampled Case [4]

Let Pj(z),j =0,...,2M — 1, denote the polyphase compo-

nents of the linear-phase prototype p(n) according to

m-—1

Pi(z)=)_ p(2tM +j) 2",
=0

The polyphase matrix can be written as

R S EL L OO
where
i ren [ () (- 552 )

®3)

with k=0,...,M—1, j=0,...,2M —1;

po(z?) diag [Po(—zz), Pi(-2%),.. .,PM_l(—zz)] ,
pi1(z?) = diag [PM(—ZZ),PM+1(—Z2),...,PzM_1(—22)] .
Perfect reconstruction is achieved if

EW(z) BV (2) = Iy, (4)

where E(z) = ET(27!) and * denotes complex conjugation
of the filter coefficients. Then the polyphase components
P;(2) satisfy the following constraint:

- - 1
Py(2)Pi(2) + Pots (2)Poan(2) = 527 (5)
for k=0,...,%—-1.

3.2. Perfect Reconstruction Conditions for the
Oversampled Case

The polyphase matrix for the oversampled case can be ob-
tained by inserting (2) into (1) which yields

L)
EX)(2) = T P(+*%) 8(2) = T ‘ pt(z )
z_(21'_1)1-)(.2L—1)(22L)
with
pe(2°") = diag[Pen (—2°"), Pev1(=2""), .. .,

ey Povgv—1y(=2%F)] M
and £=0,...,2L - 1.
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Now two cases arise:

(i) If the critically sampled filter bank has the perfect
reconstruction property (4), then the correspond-
ing oversampled filter bank obviously also guarantees
perfect reconstruction and

EX(z) EP(2) = L 1Iy. (8)

This can be easily seen from (1) and (4), because we
have

E®) (2) EX(2)

S(z) E®(2) EW(z) S(2)
S(z) S(z) =L - 1Iy.

(ii) When the L-times oversampled filter bank is designed
in such a way that (8) is satisfied and (4) is not,
perfect reconstruction is obtained for all oversam-
pling ratios L1 > L, but the filter bank designed this
way ensures only almost perfect reconstruction for
all Ly < L. However, this is the interesting case for
the design of oversampled PR filter banks, because
the conditions on the prototype can be relaxed, and
filters with higher stopband attenuation can be de-
signed than in the first case.

For the latter case we show now that (8) can be satis-
fied for arbitrary oversampling ratios L. Inserting (6) into
equation (8) yields the following condition:

§(z) P(z**) TTT P(2*%) S(z) = L - In (9)

Choosing T as in (3) with L, = 2mM leads to the following
expression for the product TTT, where the upper sign is
valid for even m and the lower for odd m, and Jar denotes
the M x M reverse identity matrix [4]:

T _ I FIm 0
TT‘2M'[ 0 Inyzdu (10)

Inserting this product into (9) we get

2M - S(z) P(z*1)P(2%F) S(z) + 2M - §(2) P(2*))

_I::FJM 0

0 +J ] P(2*) 8(2) =L Iy. (11)

For achieving the PR property, the second part of this
equation containing the antidiagonal terms must be zero,
which can be written with (6) as

L-1
:FEZ(L—I)—2l f’L—l—t(zZL) In pl(z2L) +
=0
L-1
iZZ(L_l)_u Por—1-e(2*%) In pree(z**) = 0.
{=0 (12)

Since the prototype filter p(n) is linear-phase and its
length is assumed to be an integer multiple of 2M, always
two polyphase components are related as

Pi(z) =2z~ ™ VP ;_1(2) for j=0,...,.M—1.
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Applying this equation to every element of p;(2*~) in (7)
and replacing z by —z2% yields a similar relation for two
polyphase diagonal matrices, namely

pt(zzL) — Z—ZL(m—l) (_l)m—l In §2L—l—1(32L) JN,

£=0,...,2L — 1. Inserting this equation into the left side
of (12) we see that the right side of (12) is indeed satisfied
and the condition (11) reduces to

2M - S(z) P(2**) P(z**) S(2) = L - In. (13)

This shows that the polyphase matrix for the oversampled
case in (6) indeed satisfies the condition (8) with all trans-
form matrices T having the property (10) for a fixed proto-
type length L, = 2mM, m € IN. We can exploit this fact by
directly designing a prototype for an arbitrary oversampling
ratio L instead of using a prototype for the critically sub-
sampled case L = 1 or generally for Lz < L. This extends
the known results for critical subsampling summarized in
section 2.1 in a general way.

Rewriting (13) into a condition for the polyphase com-
ponents Pj(z), j =0,...,2M — 1, yields

2L~1

- 1 N
Z Piten (2) Poyen(z) = 5 for k=0,..., [3] -1

£=0

(14)
The index k can be restricted to the first [IN/2] rows of
(13), because they are exactly the same as the last N/2
ones (N # 1). The case N =1 has been taken into account
by use of the ceiling-operator.

From (14) we can see that always 2L polyphase compo-
nents have to be power-complementary in order to provide a
perfect reconstruction linear-phase prototype P(2) for the
L-times oversampled filter bank. The critically sampled
case in (5) requires pairwise power complementarity of the
polyphase components, which is a more restrictive condi-
tion.

4. PROTOTYPE DESIGN

The fact that the requirements on the polyphase compo-
nents in the oversampled case can be relaxed is directly re-
flected by the number of constraints used for coefficient op-
timization, which is a typical time domain operation. Con-
sider eq. (14), where we have [N/2] frequency domain PR
conditions to be satisfied. Inverse z-transform of (14) yields

2L-1

1
; P+en (n) * pieten (=n) = 5= - 8(n),

where §(n) denotes the unit sample sequence. This is equiv-
alent to

2L-1m-1 1
2 gpkwv(i) ‘Prten(i+n) = N é(n)

-~
riten(n)

fork=0,...,[N/2]-1and n=—(m-1),...,(m~-1). Here,
Tk+¢n(n) stands for the autocorrelation of the polyphase
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impulse responses pr+¢n(n) = Z7{Ppten(2)} . Since we
consider a prototype filter of length L, = 2mM, m € N,
each polyphase component p;(n) has the length m, which
results in a total convolution length of 2m — 1. Due to
the even symmetry of the autocorrelation function, we only

have to take the values n = 0,...,(m — 1) into account.
With

2L-1 m=—1

Y reren(m) = re(i)d(n— i)

1=0 i=0

we obtain [N/2]m PR constraints in the time domain:

() = 53 (1) =0, r(m—-1)=0, (15)

and k=0,...,[N/2] - L

For the design of the linear-phase prototype we use
a modified quadratic-constraint algorithm [5]. Here we
obtain [N/2]m quadratic constraints, where each r(n)
in (15) can be written as r(n) = pTQi.p With
p = [p(0),...,p(Lp/2 — 1)]T and some matrices Qn With
indices n and k as given above. For details refer to [5].

These constraints are solved numerically under addi-
tional minimization of the prototype’s stopband energy,
which can be written as

= Tentt 5 ia !
E, = Z W - / Py (€’") dQ = min. (16)
k=0

),

Here Pp(e’®) denotes the real-valued symmetric amplitude
response and [wp,...,wg-1] the weighting factors for the
different frequency regions, which are characterized by the
edge frequencies [Q,,...,%q_,,sq = m]. This can be
expressed as a quadratic form with the vector p as stated
above:

Q-1

E, = Z we -p Skp =p Sp
k=0

Q-1 Qoppq
and S= w / c(Q)cT(Q) dQ,
k=0 ﬂ,h

()= [cos (L”z— 19) , COS (L”—Z—EQ) yerr,COS (%)]T

Note that it is possible to find analytic expressions for the
elements of S.

As an example, a prototype filter of length L, = 256
for M = 16 subbands with a transition bandwidth of
b = 0.0587 is designed. The NAG Fortran library was
used for the optimization process. Figure 2(a) shows the
magnitude frequency response of a prototype designed for
an oversampled filter bank with L = 2, while the frequency
response in Figure 2(b) belongs to the critically sampled
case. The oversampled case yields higher stopband attenu-
ation, since we have only half the number of PR constraints
compared to the critically sampled case.

5. RELATION TO PSEUDO QMF FILTER
BANKS

Equation (14) can be used not only for designing perfect
reconstruction L-times oversampled filter banks, but also in
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Figure 2: Magnitude frequency responses for L, = 256 and
M = 16: (a) Oversampled case with L = 2, (b) critically

sampled case.

order to obtain almost-PR solutions for oversampling ratios
L; < L, where every L/L;-th aliasing spectrum is canceled
out.

An example is displayed in Figure 3, where measured
magnitude bifrequency system functions [6] are used to vi-
sualize the aliasing distortions. Figure 3(a) shows the re-
sult for the perfect reconstruction oversampled case with
M = 8 subbands and oversampling ratio L = 2. This pro-
totype is now applied to a critically subsampled filter bank
and the resulting bifrequency system function is shown in
Figure 3(b). Note that in the pseudo QMF case we usu-
ally have M — 1 aliasing components. Because we have
designed the prototype specially for L = 2, every second
aliasing spectrum has disappeared.

6. CONCLUSION

The simplest way to design an oversampled PR modulated
filter bank is to oversample a modulated filter bank that
already gives PR for critical subsampling. However, as we
showed in this paper, we have some additional degrees of
freedom in the oversampled case, which yield prototypes
for PR filter banks with stopband attenuations being much
higher than in the case of critically subsampled PR filter
banks. Here only [N/2] PR conditions have to be satis-
fied in order to design linear-phase prototypes compared to
M/2 conditions in the critically sampled case. Moreover,
we showed that prototype filters for L-times oversampled
PR cosine modulated filter banks can be designed in such a
way that they can serve as prototypes for critically sampled
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Figure 3: Magnitude bifrequency system function:
(a) Oversampled perfect reconstruction case (M =8, L =
2), (b) critically sampled pseudo QMF case.

pseudo QMF banks, where every L-th aliasing spectrum is
canceled out.
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