CLASSIFICATION OF PIANO SOUNDS
USING TIME-FREQUENCY SIGNAL ANALYSIS

Christoph Delfs and Friedrich Jondral

Nachrichtensysteme, Universitidt Karlsruhe

D-76128 Karlsruhe, Germany

ABSTRACT

A topical task is the classification of burst-like sig-
nals, e.g. in signal detection. Piano sounds are
used here as an example. Different time-frequency
methods including wavelet processing are used al-
ternatively for feature extraction. A classifier checks
whether the generated features are sufficient to iden-
tify the correct piano. Results of the real data signal
processing are presented and discussed.

1 INTRODUCTION

This paper compares different time-frequency-analysis tech-
niques as feature generators for the classification of piano
sounds. Fig. 1 shows the flow chart of the signal processing
associated with this task. The resulting sequences {z(I)} and
{za(l)} are subject to a feature extraction by means of the
short-time Fourier transform, the dyadic orthogonal wavelet
transform, the wavelet packet transform and the windowed

Wigner-Ville distribution.

Each extraction technique provides a time-frequency re-
presentation {F(n, m)} of the input sequence and an index
set G. The sequence {F(n, m)} can be visualized before and
after the feature selection is performed. The selected features
{vn,i(1)} are either saved in a data base during adaptation
or classified using the data base.

Section 2 explains the signal preprocessing unit. Section 3
presents the feature extraction techniques used. The follow-
ing section 4 gives details of the feature selection. Section
5 provides information about the adaptation and classifier.
Finally, simulations results are displayed and discussed in
section 6.

2 PREPROCESSING UNIT

Fig. 2 shows the signal flow inside the preprocessing unit.
The piano sound is sampled at a rate of f, = 48kHz. The
maximum value of a sample is here normalized to 1. The
preprocessing unit detects the start and the stop sample of a
piano sound by measuring the average power within a window
of length W starting at index M:

w 2 M4W-1 2
fw=m%ﬁw |wn}.
=

M

Two different window lengths are used for determining the
start and stop samples of a piano sound. In order to de-
tect the start of the piano sound as precisely as possible,
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Figure 1: Flow chart of the signal processing for classification

the length of the window is set to Witarr = 30. The win-
dow length for determining the stop sample is chosen to be
Watop = 7200.

The start sample M,iqr: is the first sample fulfilling:
Pity1ane 2 Pstars = —22.5dB.

The stop sample Mstop > Mitar: is the first sample which
obeys:

Piion, < Pstop = —50dB.

The resulting sequence {y#(l)}lni‘;)'”’—M""'”—1
to a duration of 4-5s in practice.

Removing low frequency noise is performed by a bandpass
filter BP which, in addition, allows sampling rate reduction.
The decimated sequence is {z(1)}, the corresponding analyt-

ical sequence is {za(l)} .

corresponds
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Figure 2: Flow chart of the preprocessing unit (fo =
1.55kHz)

3 FEATURE EXTRACTION

The techniques used for feature extraction are described for
the discrete-time case only. In the following, details of the
extraction methods are explained. They map the input se-
quence {£(l)} on the sequence {F(n,m)}. The set G is the
set of indices n in {F(n, m)} to be used for feature selection.

3.1 The Short-Time Fourier transform (STFT)

In the short-time Fourier transform, the sequence {z(l)} is
multiplied with a sliding window sequence {w(!)} and sub-
jected to a DFT calculation:

F(n,m) = Za:(l)w(l - Dm)e_j%"’
!
n = 01,2,..N-1 , me€2Z,
G = {0,1,2,...N -1}

The windowing process can be interpreted as filtering pro-
cess with the time-reversed sequence {ho(1}} = {w(—1)} with
length Lo and subsequent decimation by D. This approach
leads to efficient implementations by means of a FFT filter

bank [CR83].

3.2 The Dyadic Orthogonal Wavelet Transform
(DOWT)

In multiresolution theory the sequence {z(l)} is interpreted
as a projection onto a set of orthogonal basis functions.
{z()} can be decomposed further using two orthogonal pro-
jectors, i.e. the filters {h(l)}' (highpass) and {g(I)}. '
(lowpass) [Mal89]. With the aid of the intermediate sequence

{un(}:

uw(l) = =) ,
L-1
un®) = Y _g(k)un-1(2m —k) ,
k=0
n = 1,2,..N-1 , melZ2
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the DOWT can be expressed as follows:

L-1
F(n,m) = Y hun(2m—1) ,
=0
F(N-1,m) = wun_i(m) ,
n = 01,2,.. N-2 , meg2Zz,
G = {0,1,2,...N -1}

The transform is realized by a filter bank as shown in fig. 3.

{F(0,m)}

o {F(1,m)}

{F@m)}

Figure 3: Realization of the dyadic orthogonal wavelet trans-
form by a multirate filter bank with decomposition depth
N—-1=2.

3.3 The Dyadic Wavelet Packet Transform
(DWPT)
The wavelet packet transform extends the filtering scheme,

as presented in fig. 3, to a filter tree as in fig. 4 and allows
multiple complete signal representations.

W} (m)}
(W} (m)}

i e W} @)

Figure 4: Filter bank according to the dyadic wavelet packet
transform

The results of this filter bank can be described in an iterative
manner using the double indexed sequences {W}(5)}:

Wo(m) = a(m),
L—1
Wit m) = Y hOWf(em-1),
1=0
L-1
Witim) = Y g)Wk(@m-1),
=0
k = 0,1,2...K-1 , me2Z2,
1 = 0,1,2...2F -1
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By using nn = 2* 41 the sequences {W;"(m)} can be mapped
onto the sequence {F(n,m)}:

F(2* +1,m) = W} (m).

The set G contains the indices n of the sequence {F(n,m)},
whose coefficients describe the input sequence completely and
with the smallest entropy (best basis algorithm [CW92]).

3.4 The Windowed Wigner-Ville Distribution
(WWVD)

The windowed Wigner-Ville distribution of the analytical se-
quence {zq(l)} is defined as follows:
P .
WWVD(n,m) = 2 Y hi()za(m + Dzi(m — )™ F,
I=—P

using the window sequence {hi(1)};=_p. As the transform is
periodic with period 7, in order to reduce the amount of data,
a modified version of the windowed Wigner-Ville distribution
is used by introducing a decimation D:

P
23" hiQ)za(Dm +Dza(Dm — D F,

F(n,m) =
I=—P
n = 01,...N-1 , meZ
G = {0,1,2,...N-1}

Fast implementations using the FFT of length N are given
in [BB8T].

4 FEATURE SELECTION

The feature selection segments the sequence {F(n, m)} with
respect to m and a given segment length V € N following
the procedure:

V-1
F(n,iV +1) if X |F(n,iV +D)* > 5,
=0

#
Un,i(l) ne e

0 otherwise

0,1,2...V—-1 |, i€Z

Those segments {v,f,,-(l)}, whose energies exceed a threshold

S, are chosen. Segments {vf,‘(l)}, which are not selected
or whose index n ¢ G, are set to 0. This technique can
be interpreted as selecting the greatest values of the time-
frequency-representation {F(n,m)}.

Finally, the segments {vf,,»(l)} are normalized by:

o
Un,i (l) = I = '(l)i

> ok

n,i,l
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Figure 5: Time-Frequency-Representation of a piano sound
analyzed with STFT

Figure 6: Time-Frequency-Representation of a piano sound
analyzed with STFT after feature selection

Fig. 5 shows the time-frequency representation obtained
using the short-time Fourier transform before the feature se-
lection takes place. Fig. 6 shows the signal representation of
the same signal after feature selection.

In simulations, the threshold S is chosen depending on
{F(n,m)} so as to obtain a fixed number B of segments
vn,i(l) # 0 for each extraction technique. The feature ex-
traction and selection map the input sequence {z(l)} onto
a unit length vector with elements {v,,:(l)}. The segments
{vn,i(1)} form a pattern of the sound.

5 ADAPTION AND CLASSIFICA-
TION

During the adaptation phase the segments {vn,i(1)} of each
piano sound are stored in a data base with a class index p
and a sound index s respectively. The sound s of piano p is
therefore stored as pattern {v;’;(1)}.

The classifier compares the incoming pattern {v,:(1)} with
each pattern {v}}(1)},,s of the data base by calculating the
euclidian distance:

2 loni() = o2 (P

n,:,l

dp,s =

The nearest neighbour classifier is used for relating the
incoming sound to a class p*. Correct classifications are
counted.
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STFT
Filter Type Fourier approximation
Channels N : 128 256 512
Filter Length Lo : 256 512 1024
Decimation D : 128 256 512
DOWT
Filter Type : Daubechies
Filter Length L : 10 10 20 20
Depth N —1 : 5 10 5 10
DWPT
Filter Type : Daubechies
Filter Length L : 10 10 20 20
Depth N —1 : 5 10 5 10
WWVD
Window Type : Hamming
Window Length 2P +1 : 127 511
FFT Length N 128 512
Decimation D : 32 32

Table 1: Parameter choices for feature extraction

L Feature Selection I
Number of Segments B : 50 100 200
Length of Segments V' : 5§ 5

Table 2: Parameter choices for feature selection

Furthermore, a threshold R is introduced for rejecting in-

secure classifications. Therefore, if d ¢ 4 > R the pattern
# #
p# e

{vn,i

(D)} is excluded from the classification process.

6 SIMULATION RESULTS

6.1 The Data Set and Parameter Choices for
Feature Extraction and Selection

The data set consists of 18 grand pianos, 15 pianos and one
keyboard, each with 20 sounds. Each sound is generated by
touching the chord Cs — E4 — G4 of the instrument until the
sound has faded away.

The feature extraction techniques were parametrized as
shown in table 1. Each parameter choice from table 1 was
simulated with the feature selection parameters as given in
table 2. 39 simulations were performed.

6.2 Classification Results and Discussion

The classification results of the simulations are presented in
tab. 3 with respect to the number of segments B and thresh-
old R=1.

The perfect classification results of the STFT are indepen-
dent from the the channel number N and the number of
segments B. Tab. 3 shows the result for N = 512. The
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| Number of Segments B : 50 100 200 |
STFT :100% 100% 100 %
DOWT : 688% 118% T16.5%
DPWT :988% 991% 99.1%
WWVD :974% 985% 991 %

Table 3: Classification results

classification results of the DOWT are independent from L
and depth N — 1. The DWPT achieves the best results when
parametrized with a long filter set and a long depth. The
rates for both techniques refer to L = 20 and the depth
N — 1 = 10 respectively.

The WWYVD achieves its best classification results with a
long window 2P + 1 = 511 and a big number of segments
B = 200. The entry in tab. 3 refers to the long window.

The bad results for the DOWT can be explained by the
fact that the underlying filter bank does not fit the signal
structure. Furthermore this transform is highly variant with
respect to the shifts of the input sequence {z(l)}. The latter
is also valid for the DWPT, but the ability of the DWPT to
match the signal structure overcomes this disadvantage.

The performance of the WWVD is on a par with the DWPT
and STFT. However, the expenditure of calculation time and
computer memory when using the WWVD is greater by an
order of magnitude.

In conclusion, wavelet packet techniques show good classifi-
cation capabilities when applied to piano sounds. Neverthe-
less, the results show that traditional algorithms as the STFT
are still very important. As comparisons between wavelet
methods and other time-frequency methods for classification
tasks are seldom, one should focus on the question under
which circumstances wavelet techniques offer advantages in
comparison with other methods.
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