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ABSTRACT

In this paper we show that the dyadic wavelet
transform may be generalized to include non-octave
spaced frequency resolution. We introduce orthogonal
and complete wavelets whose set of cutoff frequencies
may be adapted, in the simplest case, by changing a
single parameter. The novel wavelets and the FWWT
transform computational structure are obtained via an
intermediate Laguerre representation of the signal. The
warped wavelets are related to the ordinary wavelets by
means of frequency  transformations  and
orthogonalizing filtering. The classical sampled filter
bank theory is extended to include frequency dependent
upsampling and downsampling operators and
dispersive delay lines. The FWWT frequency band
flexibility may be exploited in order to adapt the
wavelet transform to signals.

1. INTRODUCTION

The wavelet transform [4] is a tool for the
multiresolution analysis and synthesis of signals.
Dyadic wavelet sets allow for the efficient numeric
computation of the transform by means of two-band
iterated multirate filter banks. Efforts in the direction
of increasing the frequency resolution of the basis
functions or sequences rest prominently on the
introduction of rational sampling rates [2, 10] and
wavelet packets. These rates determine strict
constraints on the passbands, conditioning the tiling of
the time-frequency plane that is obtained.
Furthermore, the regularity and smoothness of the
wavelets may be severely impaired on sampling grids
other than the dyadic one.

In this paper we exploit complete Laguerre
expansions in order to both define a new class of
wavelet bases, which have non-octave band frequency
resolution, and novel computational structures for the
transform. These wavelets may be obtained by
frequency warping and suitably filtering the dyadic
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wavelets. We refer to the resulting transform as the
Frequency Warped Wavelet Transform (FWWT). A
related result was presented in [1] for the continuous-time
case. However, our wavelets can be implemented using
an iterative scheme, which is computationally more
attractive.

2. LAGUERRE EXPANSIONS AND FREQUENCY
WARPING

Starting point of the FWWT algorithm is the
expansion of a discrete time causal signal y(k) on the
complete orthonormal set of Laguerre sequences.

The Z-transform of the order r sequence
A, (k;b), [3], is
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The Laguerre sequences satisfy the simple Z-transform
recurrence:

A, (2) = A@A(2)= A(2) T Ay(2), r=01,..., (2)
where
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is a first order all-pass, where b, with|b|<1, is a

parameter. The Laguerre expansion of a signal y(k) is the
following

yky = 2 u, A, (k;b) , )
r=0
where
=Y, y(k) A(k:b) . @)
k=0

It can be shown that the coefficient sequence u,
corresponds to a filtered frequency-warped version of the
signal y(k), [7, 9]. In fact, in the frequency domain we
have:

Y(e!®) = Ay (e/®)U (/%) 5)
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where 8(w) is the phase response of the all-pass A(z).
In the relevant case where b is real, we have:

8(w) = - arg A(e’®) = w+2tan"(——bﬂ).
1-bcosw

©

These characteristics are plotted in fig. 1 for several
values of b. Notice that this parameter controls the
warping of the frequency axis. The filter
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e

)

which is needed for orthogonality, is low-pass or high-
pass according to the sign of the parameter.

Fig. 1: Family of frequency warping curves with the
Laguerre parameter b ranging from -9 to .9 in
increments of .1.

In view of egs. (2, 3), the Laguerre transform
may be implemented in the non-causal IIR filter
structure shown in fig. 2.
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Fig.2: A filter structure computing the Laguerre
coefficients.

Copyright 1997 |IEEE

Clearly, only the transform of finite duration
signals can be computed in finite time. Furthermore, for
computational purposes, the Laguerre series must be
truncated to a finite number M of terms. In order to select
the proper number of terms, one can consider the group
delay of the Laguerre sequences, which is frequency
dependent. Given a length D input signal, the terms
whose minimum group delay is much larger than D may
be neglected. A lower bound on the number M of
Laguerre coefficients that must be computed is the
following :

_(D-=D1)(A+bl) +1  D(1+bl)

M2M_. = = .
min 1-1Bl -5l ®

Notice that the number of terms increases with 151,

3. FREQUENCY WARPED WAVELETS

The sequence of Laguerre coefficients u, may be
projected onto a set of discrete-time dyadic wavelets
W, (m). In its simplest form, the nested orthogonal

expansion may be compactly written as follows :

YK = D W mWam®) 5

m n=l
where

Wam = 2y ¥(K) W (k)
k=0
is the FWWT of the signal, and

Yo (m) = Z‘i}n,k (1A (m)

r=0
are the Laguerre wavelets, which are easily shown to be
both orthogonal and complete [7]. The equivalent
computational structure of the FWWT is shown in fig. 3.
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Fig. 3: Structure for computing the Laguerre wavelet
transform: implementation with Laguerre and wavelet
transform blocks: (a) analysis structure and (b) synthesis
structure.
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It can also be shown that these wavelets are
frequency warped and filtered versions of the ordinary
wavelets. Indeed, their Z-transforms satisfy the
following relationship :

¥, () =A@, (A ™) = A, DT (ADT,
©)

which is closely related to eq. (5). Typical Laguerre
wavelets are shown in fig. 4. The discrete-time FWWT
may be extended to continuous-time by means of
Laguerre interpolation [7].
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Fig. 4: (a) Typical Laguerre wavelets and (b) their
frequency spectra corresponding b=.5.

By exploiting the Z-transform relationship among the
Laguerre sequences (2) it is possible to derive from (9)
new filterbank structures, embedding frequency
warping in critically sampled filterbanks. These
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structures, shown in fig. 5, are based on generalized
down/up sampling operators, whose effective sampling
rates are frequency dependent, denoted by the symbols
A(z)zi and A(z)zT respectively. The generalized
downsampling operator is equivalent to a long chain of
cascaded all-pass filters, i.e., a dispersive delay line
similar to the one employed for the Laguerre expansion
(see fig. 2), except that each all-pass element is the
square of a first-order all-pass [7].
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Fig. 5: Two-channel frequency warped filterbanks: (a)
analysis structure and (b) synthesis structure.

The generalized upsampling operator is
equivalent to a Laguerre filter structure [8], obtained
from an FIR tapped delay line by replacing each delay
with A(z)? . The input to the line is a unit pulse, while the
signal forms the tap weights. Notice that when the
Laguerre parameter goes to zero the described all-pass
delay line are equivalent to ordinary down/up sampling.

The  Laguerre  wavelets  realize an
unconventional tiling of the time-frequency plane in non-
rectangular cells. An example is shown in fig. 6, where
the central time of each tile is computed according to the
group delay of the corresponding warped wavelet.

Similarly to the Laguerre expansion, the FWWT
filter structures are non-causal IIR, requiring finite
duration input sequences in order to be computed in finite
time. Furthermore, the Laguerre series must be truncated
to a finite number of terms, as previously discussed.

4. CONCLUSION

The increased effort needed to compute the
FWWT, essentially due to the Laguerre transform block,
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may be rewarding: experiments with this new
transform show a large variety of new perspectives both
from a conceptual and application viewpoint, removing
the half-band constraints of ordinary wavelet filters.
Frequency warped wavelets may be extended to pitch-
synchronous wavelets [5, 6] to obtain an efficient
representation of pseudo-periodic and multi-periodic
signals with non uniformly spaced ‘“harmonics” or
partials. Furthermore, a simple generalization of the
transform includes scale-dependent frequency warping,
thus increasing the flexibility of the design and
allowing for higher resolution in both low and high
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Fig. 6: Tiling the time-frequency plane with frequency
warped wavelets with Laguerre parameter b=-.3.
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