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ABSTRACT

We investigate the problem of the reconstruction of a
continuous-time function f(z) € H from the responses
of m linear shift-invariant systems sampled at 1/m
the reconstruction rate, extending Papoulis’ general-
ized sampling theory in two important respects. First,
we allow for arbitrary (non-bandlimited) input signals
(typ. H = Ls). Second, we use a more general specifi-
cation of the reconstruction subspace V{y), so that the
output of the system can take the form of a bandlimited
function, a spline, or a wavelet expansion. The system
that we describe yields an approximation f € V()
that is consistent with the input f(z) in the sense that
it produces exactly the same measurements. We show
that this solution can be computed by multivariate fil-
tering. We also characterize the stability of the system
(condition number). Finally, we illustrate the theory by
presenting a new example of interlaced sampling using
splines.

1. INTRODUCTION

In 1977, Papoulis introduced a powerful extension of
Shannon’s sampling theory, showing that a bandlimited
signal could be reconstructed exactly from the sam-
ples of the responses of m linear shift-invariant sys-
tems, sampled at 1/mth the Nyquist rate [4]. While
the theory is elegant and covers many special cases de-
scribed in the literature, we feel that the assumption
of a bandlimited input function f{z) is overly restric-
tive. Indeed, most real world signals are time or space
limited which is in contradiction with the bandlimited
hypothesis. Here, we propose a much less constrained
formulation where the analog input signal can be al-
most arbitrary, typically f(z) € L, where Ly is the
space of finite energy functions. This is possible only
because we replace Papoulis and Shannon’s principle of
a perfect reconstruction by the weaker requirement of
a consistent approximation. In other words, we want
our reconstructed signal f (z) to provide exactly the
same measurements as f(x) if it is re-injected into the
system. To make the link with more recent signal rep-
resentation theories such as splines and wavelets |3, 8],
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we also consider the more general reconstruction sub-
space V(p) = span{y(z — k) }xez where the generating
function ¢(z) is not necessarily sinc(z).

In addition to the generalization of Papoulis’s sam-
pling theorem, we introduce a simple and practical re-
construction algorithm which takes the form of a mul-
tivariate matrix filter. We also derive a new stability
coefficient that is useful for assessing the robustness of
the proposed reconstruction method. Finally, we illus-
trate the theory with some new examples of interlaced
sampling using splines.

2. FORMULATION AND ASSUMPTIONS
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Figure 1: Generalized sampling procedure. The left
part of the block diagram represents the measurement
process which is performed by sampling the output of
an m channel analysis filterbank. The right part de-
scribes the reconstruction process which involves the
synthesis functions ¢;(x) in Theorem 1.

Our system is schematically represented in Fig. 1.
We use a normalized sampling rate without any loss
of generality. The continuous-time signal f(z) is con-
volved with a bank of analysis filters h;(z),i = 1,---m,
the responses of which are then sampled at 1/mth the
reconstruction rate to yield the measurement vector
gm(k) = (91(mk),ga(mk), ---,gm(mk)). These dis-
crete measurements are then combined to produce the
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continuous-time output f(z). The system is essentially
the same as the one considered by Papoulis except that
the output f € V() is only an approximation of the
input f € H where H is a class of functions consider-
ably larger than V' (¢). To use an analogy, H is to V(y)
what R is to Z.

For mathematical convenience, we describe the mea-
surement process in terms of inner products

gi(mk) = (hy  f) (mk) = (f(z), i(x —mk)) (1)

where the equivalent analysis functions are ¢;(z) =
hi(—x). The reconstruction system works for almost
any set of analysis filters h;(z), provided that some
invertibility condition is met. We will now state our
mathematical assumptions, emphasizing the main dif-
ferences with Papoulis’ initial formulation.

2.1. Extended class of input functions

In principle, we can consider almost any input func-
tion f(z), except that we want to make sure that all
measurement sequences are well-defined in the /5-sense.
Specifically, the class of admissible input functions H
must be such is that there exists a finite constant Cy
such that

(al) VieH, [gmll <Cs-lIfllL,.

If the ¢;’s are in Ly, then we can show that it is usu-
ally possible to consider any possible finite energy input
function; i.e., H = Lg. In the case where the ¢;’s are
Dirac delta functions (interlaced sampling), we must
be slightly more conservative; for example, we can con-
sider the class of C'-continuous functions that decay
like O(|z]="),r =1 +¢€¢>0.

2.2. Reconstruction subspaces

Our reconstructed signal f belongs to the subspace of

H
V(p) = {f(@) =) clk)ple — k)lc(k) € b} (2)

keZ

where @(z) is a given generating function. This cov-
ers the bandlimited case with ¢(z) = sinc(z), but also
other more recent signal representation models such as
splines and wavelets 3, 8]. We require that V(y) is a
well-defined (closed) subspace of L. This is equivalent
to the condition (cf. [1])

(@2) 0< A, <@y(e’) < By, < +00, a.e.

where A, and B, are two positive constants (Riesz
bounds); @,(e?*) is the Fourier transform of the auto-
correlation sequence a,(k) = (p(z — k), p(z)).
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2.3. Consistent measurements

Because we have enlarged the class of admissible in-
put functions to H, we must give up Papoulis or Shan-
non’s idea of an exact reconstruction. We will replace it
with the notion of a consistent approximation of f(x) in
V(¢), that is, a reconstruction f(z) € V(¢) that would
produce the same set of measurements {g;(mk),k €
Z}i=1,....m if it was re-injected into the system. Specif-
ically, we want to impose the consistency requirement
forke Zandi=1,---,m

Vf € H,{f(z), i(x — mk)) = (f(x), ps(z — mk)). (3)

This means that f(z) and f(x) are essentially equiva-
lent to the end-user because they both look exactly the
same through the measurement system which typically
constitutes the only observation method available.

2.4. Invertibilty condition

Our solution involves a multivariate reconstruction fil-
ter @, which is specified via a matrix inversion in the
z-transform domain:

Q2) = A (2), (4)

where Ay, (2) is the z-transform of the input-output
cross-correlation matrix sequence A 4, (k) whose scalar
entries are given by

[Agolii(k) = (hi x @) (mk — j + 1). (6)

We require this filter to be invertible in the sense that
that there exists a constant Mg such that

(a3) ME= sup Amas|QT(e77)- Q(e)] < +oo,
w€[0,27)

where g5 [-] denotes the largest eigenvalue. Note that
this constant is also related to the minimum eigenvalue
of Ay, (e7*).

3. MAIN RESULTS

3.1. Generalized sampling theorem

Theorem 1 Under assumptions (al), (a2), and (a3),
it is always possible to design a system that provides a
consistent signal approxrimation in the sense of (3) for
any input function f € H. The corresponding signal
approximation admits the expansion

F@) =Y gi(mk)pi(z — mk) = Pf(z),  (6)

i=1 keZ
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and the underlying operator Pisa _projector from H
into V(). The synthesis functions ¢; are given by

¢~5z($) = Z Qi(k)(p(x - k)’ (7‘ =1,... ’m) (7)

keZ

where the sequences q;(k) are determined as follows
[ 2u(2) im(2) | =1
the filter matriz Q(z) is specified by (4).

For a complete proof and discussion, we refer to [6].
Here, we will examine some of the consequences of
this result. First, because the operator P is a projec-
tor, our result ensures a perfect reconstruction when-
ever the input signal is already included in the out-
put space: Yf € V(p), Pf = f. This corresponds to
the more restrictive framework of conventional sam-
pling theories. Second, this theorem extends Papoulis
result in [4] which corresponds to the particular case
‘H = V(sinc) = B, where B, denotes the subspace of
finite energy functions that are bandlimited to the fre-
quency interval w € [—m,w]. We also note that our
theorem provides an explicit formula for the dual basis
functions which is only implicit in Papoulis’ paper. Fi-
nally, for m = 1, we get back the generalized sampling
theory for non-ideal acquisition devices proposed in [5].

3.2. Reconstruction algorithm

To derive the reconstruction algorithm, we use a vector
representation of the reconstructed function

flx) =Y ¥"(z - mk)em(k) (9)
keZz
where the vector-sequence c,,(k) = (c(mk),c(mk +

1),---,c(mk +m — 1)) is the block (or polyphase) rep-
resentation of the sequence of signal coeflicients in (2},
and where ¥(z) = (p(z),¢(z — 1), -,z —m + 1))
is the corresponding vector generating function. Let
us now re-inject f into the system. By linearity, the
consistency requirement (3) implies that

> (®(z — mk), ¥T (z — mk)) - e (K'),
k'eZ

gm(k> =

where we also use the vector representation ®(z) =
(¢1(x), pa(z), - -, dm(x)) of the analysis functions in
(3). Making the change of variable | = k — k’, we get

gn(k) = 3 (B(z — ml), ¥7(2)) - em(k - D),
lez
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2= 1. Q™) (8)

a relation that can also be written in the form of a
multivariate convolution

gm(k) =Y Agp(D)em(k — 1) = (Agy * cm) (k), (10)
lezZ

where Ay, (k) = (B(z — mk), ¥T(z)) is precisely the
m X m matrix sequence defined by (5). Therefore, we
can solve the system by inverse filtering

Cm(k) = ZQ(l)gm(k — 1) =(Q*gmn) (k) (11)

lez

where Q(z) is defined by (4). Eq. (11) described a
practical reconstruction algorithm that takes the form
of a multivariate filter. This inverse filter is well-defined
because of the invertibility condition (a3). Note that
the above argument also proves the first part of The-
orem 1, namely, the existence of a consistent signal
approximation f in V{y).

3.3. Stability analysis

Let ‘i)(x) = (¢1(z),- -, dm(x)) be the vector represen-
tation of the analysis functions in Theorem 1. In [7],
we have established the following result:

Theorem 2 The set {®(z — mk)}rez constitutes a
Riesz basis of V(p). In other words, Vf(z) € V(p),
there exists a sequence g(k) € IF* and two strictly pos-
itive constants Ag and B?J such that

@) f@) = Tiez 8T (K)B(z — mk)
(@) Az-lgllt < 1F@)3, < By el

To show the relevance of this theorem to the stability
issue, we consider a perturbation Ag on the measure-
ments which results in a variation Af on the output.
By linearity, these perturbations also satisfy the norm
inequality (45). Combining those relations, we get

1 (”Agulz) i@, o <H|_|Agﬁll) (12)
123

az \ lgl /= (@)L,
where
B~
a = A—; (13)

Thus, we may interpret « 3 s the condition number of

the system. To compute the frame bounds explicitly,

we use Theorem 2.1 in [2], which yields
A3 = caplpd dmn [A5()]

B; = essSup Amas | Az(e)],
¢ wel0,27) [ ¢( )]

(14)

2115



where the m x 7 matrix A 5(2) is the z-transform of

the autocorrelation matrix sequence A;;(k) = (®(z -
mk), 87T (z)).

3.4. Examples

To illustrate the theory, we consider the case of inter-
laced sampling (m = 2) with a reconstruction in the
space of cubic splines (i.e., ¢ is the cubic B-spline).
The analysis functions are ¢1(z) = §(z), and ¢y(z) =
8(z — At), where At is the sampling offset. The corre-
sponding cubic spline reconstruction functions in The-
orem 1 for At = 1/2 are shown in Fig. 2a. Note
how they take the value one at the position of their
respective sample, and how they vanish at all other
sampling locations (circles). Fig. 2b displays the con-
dition number of the system as a function of the offset
parameter A¢. The algorithm has the most favorable
behavior around At == 1 (uniform sampling) with a re-
gion of relative stability for 0.3 < At < 1.7. Beyond
that point, the conditioning of the system deteriorates
rapidly. This is not surprising since the system is ob-
viously underdetermined for the limiting cases At =0
or At = 2 where the same samples are collected twice.

0 0.25 0.5 0.75 1 1.25 1.5 1.75

(b)

Figure 2: Interlaced sampling with cubic spline re-
construction. (a) Reconstruction functions ¢;(z) and
¢2(x) for At = 1/2; (b) Stability curve as a function of
At.
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