Time Delay Calculation of Stress Waves Using Wavelet Analysis
Application in Canine Edematous Lungs
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ABSTRACT

We examined the relationship between stress wave
velocities and the lung density. The discrete cubic spline
wavelet was used to calculate time delay and frequency
character of the wave that is propagated on the surface of 3
canine lungs. The analysis verified previous results
ascertaining the linear elastic model. As vascular volume,
extra vascular lung water and lung density increased, wave
velocities were decreased; that is wave velocities were
inversely proportional to the square root of the lung density.
The analysis verified the exact time-frequency relationship
for the dominant stress wave velocity (i.e. shear or
Rayleigh-Type Surface wave velocity) and showed other
transit times besides the previously observed short and long
ones are not valid.

1. INTRODUCTION

Vibration and stress wave analysis can be used to
characterize lung parenchyma by evaluating elastic constants at
various pressure-volume conditions [1,2,3]. In the theory of the
stress wave propagation in an elastic continuum, wave
velocities are proportional to the square root of the material
stiffness, as defined by elastic moduli, and are inversely
proportional to the square root of the material density [4]. In
this study we examined the behavior of the elastic wave
propagation under conditions of increasing lung density ata
constant Ptp of 5 cm of water. Transmitted stress waves were
analyzed by the discrete wavelet analysis {5,6].

The discrete wavelet transform that was implemented in
this study utilized a multi-resolution analysis in the frequency
domain. Wavelet and spectral analyses were used to distinguish
various types of distorting transient vibrations and associated
stress wave propagation modes, measured on the lung. Utilizing
the cubic spline wavelet analysis, dominant stress wave
velocities were localized and distinguished from other modes of
propagation [7].

2. THEORETICAL BACKGROUND

To improve the relation betw.en the time and frequency
resolutions [8, 9, 10}, Morlet and Grossmann [11} introduced a
new method using basic functions, called wavelets, which are
dependent on the time shift and dilation of a unique basic
function. An example of a basic function is given in Figure 1 for
various dilation factors. Each of these functions have similar
basic shapes and cyclic variations. Such functions may be
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suitable to identify signals that hold their character in whole,
though suffer nonlinear or Doppler effect variation in their
frequency.

Given the wavelet basic function (i.e. mother wavelet), ¥(x),
other basic functions are expressed as,

v,.(0= v 0

Figure 1: Basis function of wavelet with different dilation.

where T 1s the time shift, a is the dilation factor, and Va is used
to normalize the coefficients. Using this definition, its Fourier
Transform is given in (2),

¥, ()= %e‘z’"ﬁ‘l’(af ) . @)

Therefore the time-frequency domain may be divided into
flexible sized cells suitable for the bandwidth of an appropriate
section of the wavelet. That is to say that shorter wavelets
(smaller a’) have wider band in higher frequencies and
conversely, longer wavelets (larger “a’) have narrower band in
lower frequencies, or

.oy = Jxow (Do

where squared values, C, . represents partial energy of the

signal x(t) about time T and frequency bandwidth proportional
to ‘a’ [9, 10, 12].

Multi-resolution Transform

A multi-resolution transform approximates the signal with
different resolutions. Assuming that the resolution of a
continuous signal is infinite, then as the number of samples in a
desired interval are decreased, the resolution is reduced. If the
‘A’ operator is defined to approximate the signal under various
resolutions, it must be linear, and the approximation of the
function with resolution 2/ must be the same as 2’ of the
signal. Furthermore among all the approximations f(x), which
have similar resolution 2/ A,, f(x) must be closest to f(x).

Also, if v, is the vector space of all the approximated signals
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with a resolution of 2/ , then the vector space of v, must be a

sub-space of Vo - Lastly, when the function is approximated

with the resolution 2/, as the information on f{x) is partially
reduced, with an increase of the resolution to +oo, the
approximation must converge to the original signal. Therefore
the effect of using the operator, A, is to project the original

signal to the orthonormal basis of v, space.

Mallat [7] showed that the orthonormal basis of the
approximated vector space is obtained from the scale and shift
of the special function ®(x). Consequently, multi-resolution
transform operator is found from ,

S, ¢2, (u 27/n)>

f()Z

where @(x) 1s a low pass filter and the operator enclosed by <.
>, represents the inner product. The 4,1 (x) which gives the

¢2! (x - 2_] n) (4)

approximation of the f{x) with 2’/ resolution, may be
represented also with the aid of a discrete group of inner
products, 44, f(x) , as shown below

4 =((7@.g,-27n) ©

The A9, f(x)is the discrete approximation of f(x) with 2/

resolution, and is therefore more suitable for aigorithmic
construction on digital computers [7].
According to the mentioned properties of 4¢,, , it can be

shown that using the low-pass filter H(w), and high-pass filter
G{(w), projections of f(x) on the v, and O,, (orthogonal on v,

space) may be obtained from the projections on V.. space. The
functions h(n) and g(n) are found as follows, [7] :

(farg, (u-27m)= SHon-R) (£, u-2" B ©)
k=
where,

h(n) = ($, (), fu—n)) Q)

h(m) = h(-n) ®
and,
(roney (u-27n))= 3 X gon- B {fa)pya-27"k) O
where, -

gn) = (9., (), p(u ~ n)) (10)

g(n) =g(-n) an

are orthonormal functions

nez

Note that @ , (u—27'n)

for the

derive the approximated ‘€ with resolution 2’ from the
approximated ‘f with resolution 27 and obtain the
information in these approximations, namely D7 f This
method is depicted in Figure 2.

, space. Hence by defining filters, hoand 7 g, one can
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Figure 2: Block diagram of discrete wavelet Algoritms.

3. METHODS

Propagation of stress waves were studied on isolated edematous
canine lobes at Ptp of 5 cm of water. An impulse distortion was
applied via a solenoid source, and measured with source and
receiver miniature microphones [3]. Data was stored on a PC
and post processed with PC Matlab.

To study the effect of vascular volume and edema, saline
was infused in steps, into the excised and inflated canine lung's
vessels. At each step, the transmitted signals at2 and 7 cm
from an impulse surface distortion source were measured with
microphones placed on the lung surface [3]. At the beginning
and the end of the experiment, a control run without saline in
the vasculature was performed (i.e. UNP 1 and 2) [3].

In this analysis, the down sampling procedure was not
implemented, since to calculate the time delay, the highest
resolution is desired. This action is performed according to the
diagram shown in Figure 2 . First to implement this algorithm,
appropriate filters, namely H(w) and G(®) were designed.
These filters had to be designed to distinguish various bands of
frequencies, depicting major stress wave propagation frequency
bandwidths [2].

For this reason various packs of wavelets were
implemented including the Daub4, Haar, Daub20, cubic
spline, and the quadratic spline [5,6,7,8,9]. The cubic spline,
resulted in the best resolution in frequency and time domains,
given its orthonormal character. Such advantage is however
overshadowed by the fact that this wavelet is not compactly
supported and hence the computation complexity was relatively
intense.

The cubic spline methods may be represented in terms of
scaling function choices, where it is arranged as a spline of
2pt1 degree as shown below,

H(@) = ————— : (12)

In this equation, n=2+2p and the function X, (o) is defined
using Eq (13) [7],

p— - 1
2o@=3 w2k (13)

k=—c0
Using this definition, H(®) and G(®) may be calculated using
the functions,

H(w) = (14)
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G(w)=e"H(w + r) (15)

where the cubic spline is obtained for p=1, or n=4.

As the sampling frequency for the gathered signals is 2KHz,
using the values given in Table 1 to separate various modes of
wave propagation on the lung surface, a 2° scale with a
frequency limit of 43-82 Hz is utilized. Therefore the input
(source) and output (receiver or destination) signals are
analyzed in fifth scale and their peaks are compared. The time
difference between these peaks is chosen as the time delay of
interest. Given the distance between the source and destination
microphones, stress wave velocity is calculated through the
following relations {1,2,3],

d
V=—— () 16)
Tty
vt 3
pP;i =—— (gem) : 17
M
TABLE 1
SCALE | COF Hw) { COF G(a)
1. 1.0278 2.114 - 4.169
2. 0.5123 1.080 - 2.083
3. 0.2546 0.531 - 1.040
4. 0.1258 0.267 - 0.519
5. 0.0614 0.135 - 0.258
6. 0.0307 0.068 - 0.129

4. RESULTS and ANALYSIS

Figure 4 shows output signals from the wavelet transform of the
source and destination microphone signals with a scaling factor
of 2°. The clean and visible time delay between these signals is
an interesting outcome of this technique. In Fi§ure 5a the
frequency spectrum of the source signal with (2° scale) and
without the application of the wavelet transform is shown.
Figure 5b depicts a similar pattern for the destination signal.
These figures verify the validity of the usage of the 2° scale for
this analysis.

Figure 6 shows the outputs of the wavelet transform for the
destination signal for various scaling in time domain. Figure 7
(the comntour plot) shows the frequency spectrum for the same
signal for the same scaling. As seen from these Figures, in
terms of time and frequency representations, the maximum
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signal exists in forth and fifth scales, that is in the range of 45
to 165 Hz. Moreover, the ultimate peak in time domain and in
the power spectrum belongs to the fifth scale or 2°.
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Figure 4: Output signal from the wavelet transform of the
source and destination signals.

1 1 v
0% Bk P ®
a8 0.8
o1 or
Eos| 08
Eos| |} 05
ool f[i oe} I
03| [4: ea} M
0.2 o2] (B2
6.1 sa )l £t
T S
FREQ. () FREQ. (H2)

Figure 3: (a) Power spectrum of the source signal using the fiths
scale (dash line) and without the application of wavelet (solid
line) (b) similar pattern for the destination signal.

Figure 6: Outputs of the wavelet transform for the destination
signal for various scales in the time domain.

These results suggest that the velocity of the propagated
waves on the surface of the canine lungs resemble both the
shear or Rayleigh-Type Surface wave (as the most dominant
wave), and the longitudinal wave velocities. Other modes of
propagation are extremely weak.
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Figure 7: Contour graph on scale-frequency plane.
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To further study the dominant propagated stress wave, the
results from the 2° scale were compared to the theoretical stress
wave velocities based on the elastic moduli estimation values.
Table 2 depicts velocity and density, p; , calculated from
equations, (16) and (17), and also p,, , which is the calculated
density based on the amount of water infused into the lungs and
the estimated shear modulus {1].

TABLE 2

Up | Pl | P2 | P3| P4]|P5]|P6|P7
1 2

\J 128 | 1051 98 | 93 [ 8 | 83 | 78 { 74 | 80

pi A5 [ 211271 3 4 1454 5 T ] 6

pv 22 1331381 4] 5182 61741 6

These results suggest that as the water accumulation in the
vasculature or lung density is increased, the velocity of the
stress wave is decreased, as predicted from Eq. (17). For the
final unperfusion control test, after an irreversible water
accumulation has occurred in the lung, it seems that due to the
vasculature trap, water is not ejected out of the lung completely
in the region of stress wave measurement and the velocity of the
stress wave may not match that of the theoretical density change
(Table 2).

Figure 8 shows the stress wave velocities for various
densities for all three canine lungs tested. A second degree
polynomial was fitted to this data. The curve fit is calculated
based on the theoretical stress wave velocities.
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5. CONCLUSION

The output of the energy localization algorithm was an accurate
measure of time delay of the source and receiver signals, placed
at 2 and 7 cm away from the impulse distortion source. Stress
wave velocities calculated from the transit time were compared
to a theoretical estimate which is based on the linear elastic
model of the lung as a homogeneous and isotropic material. The
results verified our previous findings {3] and gave evidence of
the exact energy localization regions.

Using the mentioned wavelet transform, we were able to
separate Rayleigh-Type Surface wave velocity (or shear) from
other types of waves. This analysis, enabled us to measure the
amount of edema in canine excised lungs and minimize the
amount of interference of other waves.
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