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ABSTRACT

Normal form digital filters are attractive due to their de-
sirable properties when implemented in finite wordlength
arithmetic. These filters are free from all overflow limit cy-
cles and quantization limit cycles when magnitude trunca-
tion is used. However, when two’s complement truncation
(TCT) quantization is used, limit cycles can still exist. In
this paper, it is shown that when block structures are used,
normal form digital filters can be made free of limit cycles
due to TCT quantization. It is shown that this can be done
with a small block size. An algorithm is also presented
to find the minimum block size required for a given filter.
Some examples are given to illustrate the results.

1. INTRODUCTION

When digital filters are realized in processors, finite
wordlength effects are inevitable. These effects are non-
linear in nature and make the filters susceptible to limit
cycles. Limit cycles can arise in digital filters due to the
effects of overflow or quantization. Both of these effects
have received widespread attention in the literature. There
are different kinds of overflow and quantization. In this pa-
per, we focus on two’s complement truncation quantization
in normal form digital filters.

The effects of magnitude truncation (MT) and roundoff
(R) type of quantizers have been extensively studied. A
relatively very small number of papers have appeared on
the case of two’s complement truncation (TCT) quantiza-
tion. As pointed out in {1}, the shortage of contributions
may perhaps be attributed to the peculiarities of the related
nonlinear characteristic Q{z}, which is not suited to the di-
rect application of such inequalities as Q{z} < kjz|, which
yield significant results in all other cases. TCT quantization
is a common occurence in digital filter implementation and
has been studied to some extent. Direct form digital filters
with TCT quantization have been analyzed. The existence
areas for limit cycles in the parameter plane and the max-
imum amplitude of these limit cycles have been studied in
[2] and [3], respectively. In [1], the global asymptotic stabil-
ity (g.a.s) regions have been found for second-order direct
form filters implemented in processors with single length
accumulators. Some general properties of limit cycles due
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to TCT quantization were established in [4]. More recently,
g.a.s. regions for double length accumulator digital filters
were obtained in [5], [6] and {7}. In these references, both
direct form and normal form filters were considered. The
g.a.s. regions found in these papers are restricted to rather
small regions in the parameter plane. The motivation for
this paper is to use block realizations so that any linearly
stable (stable without quantizer(s)) normal form filter im-
plemented with TCT quantization would be free of limit
cycles.

The idea of using block realization to suppress limit cycles
in fixed-point digital filters was suggested in (8], [9], and
then quantitatively analyzed in [10]. It was shown in 1980,
{10] that block filters realized in normal form do not have
any overflow limit cycles. Also, with suitably long block
lengths, roundoff limit cycles can be prevented. However,
that paper does not give any results on TCT limit cycles in
normal form block filters. The reason being that the g.a.s.
regions for normal form filters under TCT quantization were
not established until very recently.

In this paper, it is shown that limit cycles due to TCT
quantization can be suppressed in block normal form filters.
The organization of the paper is as follows. In section 2,
normal form digital filters are briefly described along with
the TCT quantizer characteristics. Some exisiting results
on TCT quantization are also stated. The main results
of the paper are presented in section 3. Some illustrative
examples are given in section 4. Section 5 is the conclusion.

2. NORMAL FORM FILTERS UNDER TCT
Consider a digital filter with state and output equa-

k+1)| | A B z(k) (1)

s [Tl e || e
where u(k), y(k) are scalars representing the input and out-
put respectively, z(k) is n x 1 state vector, A, B, C, D are

nxn,nx1,1xn, and 1x1 matrices, respectively. With zero
input and quantization, the filter satisfies the state equation

z{n + 1) = Q{Az(n)}
where Q{.} represents the TCT quantization operation. For

a nx1 vector z, the quantizer is assumed to operate on each
element independently of the others, that is

Q{z) = [Q{=:1}, Q{=2},--- Q{zn}]"
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where T denotes the transpose. For a scalar v, the TCT
quantizer satisfies

0<v—-Q{v}<gq

where ¢ is the quantization step size. Without loss of gen-
erality, ¢ will be assumed to be unity. Then Q{v} is the
maximum integer not greater than v, that is, the floor of v.

Normal form filters are those for which A is a normal ma-
trix, that is, AAT = AT A. These realizations are attractive
because they are free of limit cycles due to overflow and MT
quantization as long as they are linearly stable. However,
these filters are still susceptible to limit cycles due to TCT
quantization. The following theorems (established in [5))
give the g.a.s. regions for normal form filters with TCT
quantization.

Theorem 1 Consider the following first-order system
z(k+ 1) = Q{Xrz(n)})

where Q{.} represents TCT quantization. If —1 < A < 0,
then z(n) — 0, as n — oo.

Theorem 2 Consider a second-order coupled-form digital
filter

z(n+ 1) = Q{Az(n))}

o
—-—Ww

where A = w , t(n) =
a

r2(n)
resents TCT quantization. If |o| + |w| < 1 and 0 < 0 then
z(n) — 0,as n — oo.

zi(n) ] and Q{.} rep-

The above conditions are very restrictive in the class of
filters that can be designed. The g.a.s. region given by
Theorem 2 is shown in Fig. 1. In [6] and [7], the g.a.s. re-
gion has been extended by finding some bounds on the limit
cycles and then using an exhuastive search. The extended
region is given in Fig. 2.

3. STABILITY OF BLOCK NORM FORM
FILTERS WITH TCT

Consider a digital filter with the state and output
equations given in (1). Instead of processing a signal input
u(k) to obtain signal output y(k), we process the input se-
quence in blocks of length L. That is, the state vector is
updated every L samples by using input and output buffers.
Writing out (1) for k+2,k+3, .-, k+ L gives the following:

#'(k+ L) (k)
.tl/c(k)1 A B ti(k)l
vk +1) =[C, D,] WD
y(k+L—1) w(k+L—1)

where A’ = AL B’
[c, CA,~-~CAL_l]T, and

[At='B,At2B,...B],C' =

D 0 0

, CB D e 0
D' =

CAY2B cCcA'~*B ... D
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The above is the well known block form structure [8). We
now present a new block structure that extends the TCT
g-a.s. region of Fig. 2.

Let L = 2 and A be a second-order normal form realiza-
tion, that is

a=l2 e ¥
Define a diagonal matrix E such that
Ei; = —sgn{Aii} = —sgn{cs} (4)
where sgn{.} denotes the sighum operation. Also define
A_=AxE. (5)

It is easy to see that A_ is negative in the diagonal and
that A_A_ = A2, Please note that the above also holds for
first-order systems, that is, with A being a scalar.

Let us now realize a first- or second-order normal form
filter in modified block form as shown in Fig. 3, where
the block length is L = 2. This structure is essentially the
same as a standard block realization, except that instead of
updating z(k + 2) = Q{A%z(k)}, we perform

ok +2) = Q{A_z(k+1)} = Q{A-Q{A-2(K)}}. (6)

The main theorems of the paper are now presented.

Theorem 3 Consider a first-order digital filter with system
matric A = A. If |A| < 1, then the block filter realized as
in Fig. 8 with TCT quantization, is globally asymptotically
stable.

Theorem 4 Consider a second-order normal form digital
4

implemented in
—w

filter with system matriz A =

block form as in Fig. 3 with TCT quantization. If |o|+|w| <
1 then the filter is globally asymptotically stable.

Proof: The proofs of Theorems 3 and 4 are straight for-
ward. z(k + 2) in (6) represents the samples of the state
variable in normal form realization with system matrix A_,
which is globally asymptotically stable based on Theorems
1 and 2. Therefore the realization of Fig. 3 is globally
asymptotically stable. &

The results of Theorems 3 and 4 are significant because
as illustrated in Fg.4, the g.a.s region has been extended to
the right hand side of parameter plane. That is, the g.a.s.
region has been doubled with a block length of only 2.

The g.a.s. region in Fig. 4 can actually be extended to
the entire unit circle by increasing the block length. Since
the eigenvalues of the block system matrix are X’ = AL itis
possible to move the eigenvalues further inside by increas-
ing L. A suitable search algorithm for finding the minimum
block length is given in Fig. 5, which we now explain in
detail. We start with a given second order filter with eigen-
values 0 & jw. If the eigenvalues are in the g.a.s. region
of Fig. 4 (|o| + |w] < 1), then we determine if they are in
the g.a.s. region of Fig. 1 (¢ < 0). If so, we implement
in standard normal form. If not, we implement in modified
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block form with block length L = 2 as in Fig. 3. On the
other hand, if the g.a.s. region of Fig. 4 is not satisfied,
then we know that we need a block length L > 2. Next, in
Part A of Fig. 5, L is increased until the eigenvalues are in
the g.a.s. region of Fig. 4. This block size is denoted by Lo.
At this point, we can implement the modified block form
as in Fig. 3 with a block size of 2Lo and be guaranteed of
stability. However, it may be possible to have a block size
less than 2Ly and still have stability. Part B of Fig. 5 is de-
voted to search for this minimal block size. If o < 0, then
we can implement as a standard block system with L = k.
Otherwise, we increase the block size at each increment of
k and check if ox < 0. If so, we can implement as a stan-
dard block system with L = k. But if we end up increasing
the block size to greater than 2Lg, then we resort to imple-
mentation as a modified block form with block size 2L¢. In
other words, the maximum block size needed is 2Lo, and
the algorithm of Fig. 5 guarantees an implementation with
a minimal block size.

4. EXAMPLES

In this section, some examples are given to illustrate
the foregoing results.

Example 1: Let 0 = 0.8,w = 0.1,z(0) = [-2, —1]". The
eigenvalues satisfy the g.a.s. region of Fig. 4 but not of
Fig. 1. When this system is implemented with TCT quan-
tization in standard (ron block) form, it yields the follwing
period-one limit cycle: [-2,-1), [~2, -1}, ---.

With the modified block normal form realization (L = 2),
the system yields z(1) = [1,1], z(2) = [~1,-1)", z(3) =
[0,0])" = stable.

Example 2: Let 0 = 0.8,w = —0.5,2(0) = [2, —1]'. The
eigenvalues do not satisfy the g.a.s. region of Fig. 4 and
therfore we need a block size L > 2. Standard realization
yields a limit cycle of period 10.

The algorithm of Fig. 5 yields L = 3 with standard
block realization. With this structure, the state vector gives
(3) = [0,1), z(6) = {-1,~1], z(9) = [0,-1]", z(12) =
[0,0]) = stable.

5. CONCLUSION

Normal form digital filters have been investigated for
stability under TCT quantization. It is shown that if a
block structure is used, then with a suitable block size, all
limit cycles can be suppressed as long as the filter is linearly
stable. An algorithm is presented that determines for a
given filter, what kind of structure is required, namely, non-
block, standard block, or modified block. The algorithm
also determines the minimum block size required.
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Fig. 1 G.A.S Region for TCT Quantizer
Given by (6] and (7].
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Fig. 2 G.A.S Region for TCT Quantizer
Given by Theorem 2.

Part A
L
a
Fig. 4 G.A.S Region for TCT Quantizer
Given by Theorem 4.
Part B8
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