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ABSTRACT

A novel computationally highly efficient realization of sharp
symmetrical bandstop FIR filter is proposed. The new
structure is derived using the frequency-response-masking
technique, where the bandedge-shaping filter is derived from
half-band filter by substituting each delay of the half-band
filter by M delays. The masking filters are unconven-
tional. They are quadrature filters derived from linear
combinations of the masking filters in the conventional fre-
quency-response-masking technique. Approximate expres-
sions for the optimal value of M and the corresponding
number of multipliers are derived.

1. INTRODUCTION

The implementation of sharp cut-off filter is generally re-
garded as a difficult digital filter realization problem. For a
given passband, stopband and peak ripple magnitude, the
order of an FIR filter is approximately inversely propor-
tional to the transition width. As a consequence, sharp
FIR filters are necessarily of high orders. This results in a
high computation rate, large coeflicient storage, and high
roundoff error. A computationally efficient FIR filter real-
igation technique thus has attracted the attention of many
authors in recent years [1]-[15]. Most of the previously pro-
posed efficient FIR filter realization schemes are suitable
for lowpass or highpass filters and, to a very limited extent
[10]-[15], for bandpass/bandstop filters.

One of the computationally efficient realization for sharp
filters is the frequency-response-masking technique [1]-[4].
Filters synthesized using the frequency-response-masking
technique is essentially a system of FIR subfilters, whose
z-transform transfer function is of the form

H(z) = Ho(z™)Hma(z) + (27— Ha(2™)] Hre(2) (1)

In (1), H(z) and Ho(z™) are the z-transform transfer func-
tions of the overall filter system and the bandedge-shaping
filter, respectively. Hara(z) and Hasc(z) are the z-transform
transfer functions of the masking filters, respectively. The
structure is shown in Fig.1.

The main advantages of the frequency-response-masking
technique are that it employs subfilters with very sparse co-
efficient vectors and that the resulting effective filter length
is only slightly longer than that of the theoretical(Remes)
minimum.
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Figure 1. The structure of a filter synthesized using
the frequency-response masking technique.

The frequency-response-masking technique optimal de-
sign for lowpass filter has been studied by Lim and Lian
[2). In the bandstop cases, the problem is somewhat more
complicated requiring a careful selection of M so that the
spectral images are well separated.

Traditionally, a bandstop filter is derived from a bandpass
filter in a straightforward manner. An efficient bandpass
filter design is proposed by Neuvo et al [10]. The imple-
mentation structure is derived from IFIR [6][7] structure.
However, this implementation is limited to narrow-band
bandpass filters only. Rajan et al[11] extended this method
by using the modulated frequency-response-masking filters.
This leads to a flexible approach especially efficient for very
sharp bandpass filters; the structure, however, is involved
and requires two bandedge-shaping filters, four masking fil-
ters; an extra adder is also required to realize the compli-
mentary filters of the bandedge-shaping filters.

In this paper, we propose a novel variation of the
frequency-response-masking approach for an efficient syn-
thesis of symmetrical bandstop FIR filters. In this proposal,
the bandedge-shaping filter is derived from a half-band fil-
ter. The masking filters are unconventional. They are
quadrature filters derived from the linear combinations of
the masking filters of the conventional frequency-response-
masking technique [1]. (By quadrature filters we mean fil-
ters symmetrical or anti-symmetrical about the quadrature
frequency f./4, where f, is the sampling frequency.)

2. FREQUENCY RESPONSE MASKING
TECHNIQUE AND ITS VARIATION

The principle of frequency-response-masking technique is
illustrated in Fig. 2 [3]. In the z-domain, the input signal
X (z) is filtered by a pair of complementary bandedge shap-
ing filters Ho(2z™) and H(2™), respectively. The sum and
difference of the output of Ha(z™) and H.(z™) are filtered
by the masking filters Humo(z) and Hprc(z), respectively.
The outputs of Huma(2z) and Hase(2z) are summed to form
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Figure 2. Principle of the frequency-response-masking

technique.
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Figure 3. Alternative realization of the frequency-
response-masking filter.

the final output, Y(2). A variation of this system as shown
in Fig. 3 was derived in {3]. Fi(z) and Fa(z) of Fig. 3 are
defined in (2)

Fi(s) = 3 [Baa(2) + Haee(2)] (2a)

Fi(s) = 3 [Haca(2) = Haael2)] (2b)

and H;(z™) in Fig. 3 satisfies the implicit relationship of

(3)
Ha(z™) = % [275M _ Hy (™) (3)

where H.(zM) is obtained by replacing each delay of a half-
band filter by M delays. The length of H.(z) is 4K + 1.
This method is efficient for the design of sharp FIR lowpass
filters with transition band centered at the frequency f. =
%&, where M and p are integers with p < M and
transition width less than f,/4M. The sampling frequency
is f,.

The architecture of Fig. 3 is also adopted in our new
approach which is eminently suitable for the synthesis of
bandstop filters whose stopband center frequencies are lo-
cated at f./4.

3. SYNTHESIS OF SHARP BANDSTOP
FILTER

In order to simplify notations, in this paper, we shall assume
that all the filters are zero phase. As a consequence, the
resulting filters are non-causal. Nevertheless, causality can
be easily achieved by delaying the impulse response of the
filter by an appropriate number of samples. Also, we assume
that the filters are all odd length filters. Define Haga(z) of
Fig. 2 as

J
Huo(z) = haea(0) + Y haea(k)(2* +27%) (4)

k=1

The length of Hama(z) is 2J + 1.
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Figure 4. Frequency response for (a) the under-
sampled half-band bandedge-shaping filter; (b) the
quadrature masking filter Fy(z), F2(2); (¢) the result-
ing desired sharp bandstop filer.

It has been shown in [4] that if the bandedge-shaping
filter is a half-band filter, it can be easily shown that the
masking filters are of equal lengths. Hence,

1
Haee(z) = haee(0) + 3 hace(k)(z* + z7%) (5)

k=1
We shall use the alternative structure shown in Fig. 3 to
illustrate our new method. We choose H;(z™) such that (3)
is satisfied and instead of using the definition of (2) for F1(z)
and F3(z), we redefine Fi(z) and F2(z) to be quadrature
filters formed from the linear combinations of Hase(z) and

Hu(z) as depicted in (6),

7
R(x)=Y [hM¢(2k)(z" )

k=0

+hare(2k)(z?* + z-”)] (62)

17/3}+1

F(z)= )

k=1

[ hae(2k ~ 1)(z2*F 4 z(35-1)y

— haea(2k - 1)z + z-“"-”)] (6b)

where | J/2] is the largest integer not larger than J/2. The
overall filter can then be expressed as

H(z) = Fi(z) + H(") Fa(2) (M

Let H(ej”), Hy(ef™M), Fi ('), and F2(e*) be the fre-
quency response of the filters whose z-transform transfer
functions are H(z), Hi(z™), Fi(z), and Fa(2), respectively.
The relationship between H(e’“), Hi(e?“™), Fi(e’¥), and
Fy(e’*) as depicted by (7) is illustrated in Fig. 4. A band-
pass filter can be easily derived in a similar way or by simply
taking the complementary filter of the overall bandstop fil-
ter.

It is interesting to note that both the masking filters
and the bandedge-shaping filter are quadrature filters with
sparse coefficient values. Thus the structure is also efficient
while operating under multirate environment.
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4. OPTIMUM DESIGN OF SHARP
BANDSTOP FILTERS

The optimal length of a lowpass filter with transition width

Bf:, where f, is the sampling frequency, is given approxi-
mately by the expression [17],

 B1(88.)
= I

When 8 < 0.2, the first term becomes dominant. Thus, (8)
can be simplified to

 #106.5.)
- B

Applying the result of (9) the half-band filter Hq(z), with
transition width M3, has the filter length of

 &1(6)
N> = 5 (10)

where §; is the passband and stopband ripple magnitude.
The transition width of Hase(z) and Hae(z) are both 3}7.
Hence, each of them has length N,, given by

Nom ~ 2M &, (6p, 5.) (11)

The filter lengths of Fi(z) and F2(z) are each equal to Ny,
In general, only 50% of the coefficients of & linear phase
filter are distinct. For all three filters in Fig. 3, half of the
coefficients are trivial. Thus the total number of multipliers
required is

No + 85(85,6.)8 + 1 (8)

No for <02 (9)

N, @

Lty In %’;) + M%,(6,,6,) (12)
In order to facilitate derivation, we assume that §; = b, =
8, = 6o, where &, is the allowed overall peak ripple mag-
nitude.(We have assumed that the peak ripple magnitude
of the overall system is the same as those of the subfilters.
This is obviously not true since the subfilters are cascaded
together. However, This does not significantly affect its
filter length because the filter length is more sensitive to
transition width than to ripple magnitude. Furthermore,
we are only interested in an approximate but useful so-
lution.) Thus, the number of multipliers required for the
overall bandstop filter in Fig. 3 is given by

L =~( + M)&®:(61) (13)

1
4MpB
Differentiating L with respect of M and equating the deriva-
tive to sero, we have

Mope = 35 (14)
where Mop: is the value of M at minimum complexity.

Thus, the optimum value of L, denoted by Loy is given
by
$,(6

VB

In [16], Mintse et al estimate a practical design rule for
bandpass digital filters. The order of a bandpass filter, de-
noted by Ny is given by

Nb % Coo(8p,6)/ OFm + g(8p, 6.)AFm + 1 (16)
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Figure 5. plot of 8,(6;) vs. 6.

where §p and §, are the passband and stopband ripples,
respectively; and AF,, satisfies

AFy = min{AF, AF,} (17)
where AF; and AF, are the left and right transition widths

of a bandpass filter, respectively. When AF,, < 0.15 the
first term is the dominant term. Thus, we have

No ~ Coo(6p,8,)/ AFm for AFn <0.15 (18)

For a bandstop filter with AF,, = 3, the length Ny is
therefore given by

.. Coo(61)
Na= ; (19)

with the assumption that both passband and stopband rip-
ples are §,. Taking advantage of the symmetry of the filter
and the fact that half of the coefficients are trivial, the num-
ber of multipliers required is

Lax Co;—(ﬁsll (20)
The fractional saving 7 is given by
n= Leg— L r~ Cm(61)—(1/M+4Mﬂ)«I>1(51) (21)
Ld Coo(sl)
Substituting Mop: into (21),
_La—-L Cw(b:)— 4/B%.(8:)

Y Coo(61) (22)
The new method is effective if # > 0, that is when 8 <
Bu(51), where

Bs(61) = [%] . (23)

Note that §3(6:) is a function of the ripple magnitude 6,.
The values of G5(61) for different values of §; ranging from
0.00001 to 0.3 are shown in Fig. 5. It can be seen from
Fig. 5 that for a wide range of ripple magnitude(0.00001 to
0.3), our new technique is efficient for g less than 0.0617.
The saving increases when the transition width decreases.
Fig. 6 shows n versus 8 plots for §5 = 0.01 and 0.0001.
It is evident from Fig. 6 that the fractional saving, 7%, is
influenced strongly by the value of the transition width,
£, but is not sensitive to the value of overall peak ripple
magnitude.
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Figure 6. relative savings in multipliers n vs. desired
transition width 3.

5. AN EXAMPLE

We shall choose the design of a bandstop filter with stop-
band centered at f,/4 as an example to illustrate our
method. The stopband width of the example is 0.19 and
its peak ripple magnitude in both passband and stopband
is 0.01. An equi-ripple direct form realisation requires a
filter of length N = 197; taking into consideration the sym-
metry of the coefficients and the trivial coefficient values
leads to 50 multipliers per output sample.

For our improved method, the bandedge-shaping filter
is derived from prototype half-band filter of length 51;
this corresponds to 13 non-trivial distinct coefficients. The
masking filter length is 25. Taking the symmetry of the co-
efficients and the trivial coefficients into consideration, the
two masking filter Fy, F3 requires a total of 13 multipliers.
Hence, the total number of multipliers required by the en-
tire system of filters is 26; this corresponds to a saving of
almost 50%!

8. CONCLUSION

In this paper, we have presented a new efficient technique
based upon frequency-response-masking technique for the
synthesis of sharp bandstop filters. Quadrature filiers are
employed as the bandedge-shaping filters as well as the
masking filters.
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