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ABSTRACT

A new straightforward design of a special class of
elliptic IIR filters is presented. The major goal is
the complexity reduction of the realized digital filter.
The multiplier coefficients are implemented with lim-
ited number of shift-and-add operations. This method
is also called ”multiplierless”. Unlike classical design,
a closed-form relations are derived giving relationships
between the filter specification and preferred multiplier
coefficients. At least a half of the coeflicients can be im-
plemented with the minimal number of shift-and-add
operations without coefficient quantization. The sec-
ond half of coefficients can be optimized without any
influence on the values of the first half of the coeffi-
cients. A high attenuation margins and low-sensitive
structures are used so that specification is still fulfilled
after quantization of the second half of the multiplier
coefficients.

1. INTRODUCTION

The complexity of a digital filter, when implemented
as a custom or semi-custom integrated circuit, a repro-
grammable logic device or a low-cost micro-controller
without an in-built multiplier, is determined primar-
ily by the number of additions required to implement
multiplication constants. This imposes a requirement
to fulfil given specifications with a minimum number
of shift- and add-operations in multipliers, what prac-
tically leads to the implementation of multiplierless fil-
ters. In papers [1] and [2] this problem has been solved
for FIR filters. As for IIR filters, it has been shown
in [3] that the use of different wordlengths for cho-
sen coefficients, in accordance with different magnitude
response sensitivities, can reduce the mean coefficient
wordlength.

The aim of this paper is to introduce a direct de-
sign method for the elliptic IIR filters in which each
multiplication constant can be represented in the form:
+1/27 or +£1/27 £1/2% or £1/2P £ 1/29+1/2", p, g,
r integers, what practically yields a multiplierless im-
plementation. This method can also be employed in
designing very complex filters, because an elliptic func-
tion digital filter is an optimal solution in very selective
magnitude nonlinear phase and linear phase IIR filters
{4]. It is shown in the paper that with an adequate
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usage of the practically always existing margin in per-
formance, a multiplierless filter can be obtained by a
convenient choice of the filter transfer function and the
realization structure matched with it.

The transfer function H(z) is formed by a bilinear
transformation from an analog minimal @ factors pro-
totype [5]. The poles of H(z) are in the z plane on a
circle that is orthogonal to the unit circle and whose
centre is on the real axis [6]. This halves the number of
parameters required for representing the poles in the z
plane: one parameter is common to all poles (the cen-
tre of the circle), and the position of each single pole
is determined by its radius only. The centre of the cir-
cle depends exclusively on the frequency at which the
filter has a 3 dB attenuation. The square magnitude
response of this filter has equal pass- and stop-band
tolerances (6, = 6,) what gives a very small pass-band
attenuation.

2. IMPLEMENTATION STRUCTURE

The implementation based on the sum of or difference
between two allpass functions is used, i.e.

HE =3 (B2 HE) ()

As known, this is the most economical implementation,
because it requires a total of n multiplications, n - the
filter order, an odd number. If H(z) is a transfer func-
tion of an odd-order elliptic filter, it can be presented
in the form:

H(z)= 1 zl("‘f[)/ﬂ Bi +oi(1+Bi)e 4272
) Lt oi(l+ Gzt + Biz™?

(n+1)/2
+

Bi + ei(1+ i)zt + 272 @)
+ai(1+ B)z"1 + B;z—2

1
[(n+7)/4]
If the position of the pole z; is given by z; = r; ei%
o; and J; are determined from

Bi =1}
fr=0 - .
{a1=—r1 and ¢ oricosb;

PO 142
what gives the parameters needed for the implementa-
tion of allpass second-order sections according to [7].

i>1 (3)
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3. DESIGN PROCEDURE

Let the required digital filter specifications be given
with boundary frequencies for the pass-band F, and
F for the stop-band, pass-band ripple A, and minimal
stop-band attenuation A, expressed in dB, as shown in
Fig. 1. The filter specifications are fulfilled for various
combinations of the elliptic filter boundary frequencies
Jp and f,. Design margin from Fig. 1 [as—A,, Ap—ap,
Fo — fa, fp — Fp) can be used for obtaining a minimal
number of adders in multiplication constants «; and G;.

a = -10 log (H(eJ9)[2)

Figure 1. A typical elliptic filter

To achieve this, we will divide the multiplication con-
stants into two groups that will be considered sepa-
rately: the first group includes «; and the second S;.
It is proved directly that, for the filter transfer func-
tion proposed in this paper, the constants from the
first group are:

a; = a, i>1
a o® af
R T “)

where
1—tannF,tannF,

arm- 1+ tan7TF, tan7F, (5)
1—tan’nF, 1~-tan® 7 F,
"1+ tan? TFp, <e<] +tan’ 7 F, ()

The given F, and F, are used to determine the range
of the permissible values of «,

a = cos27f, 4B, (M

tan® 7fsqp = tan7fptan7f, (8)

The first step is to see if anyone of o from Fig. 2
belongs to the range defined in (6), and is also close to
the approximate values (5). Similarly to Fig. 2, Figs.
3 and 4 are created presenting the values which can be
made by the sum or difference of two and three coef-
ficients, respectively. The next step is to see if from
Figs. 3 and 4, a value o can be selected such as to
lie in the range (6). This is how the frequency f 4
is established. This frequency must remain unchange
during the entire procedure, whereas f; can be modi-
fied yet keeping relation (8) satisfied. The established
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value of a is common to all second-order sections and
is repeated (n — 1)/2 times.
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Figure 2. fagp = 1/4+Af, a € {£1/2?},p=0,1,...8.
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Figure 3. fagp = 1/4x Af, « € {£1/2F + 1/29},
p,g=0,1,..8.
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Figure 4. fagp = 1/4xAf, 0 € {£1/2P£1/29+1/27},
p,q,r=0,1,..8.

The procedure for adjusting the second group of coef-
ficients is based on the sensitivity analysis of the trans-
fer function realized by a parallel connection of two
allpass networks, presented in the Appendix. From
equation (A4), the magnitude response sensitivity can
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be computed as the product of the filter reflectance
function, |sin((¢as — #5)/2)|, and the phase sensitiv-
ity of the corresponding first- or second-order section,
0¢;(w)/0z. Tt is evident from (A3) and (A4) that the
magnitude response sensitivity in the pass-band, where
(da(w) — d5(w))/2 = 0, is very low, whereas it is higher
in the stop-band where |@4(w) — #5(w)|/2 ~ 7/2. The
transfer functions of these filters yield a very small ap,
what permits taking only the stop-band margin into
account in adjusting B;. For stop-band attenuation
minima, max|7/2 — |¢a(w) — ¢s{w)}/2|, are calculated
according to the specified margin, and the approximate
values of coefficients B; are then determined through a
number of trials. The influence of a coefficient increases
as the appropriate pole approaches the unit circle.

The sensitivity depends on the phase sensitivity to o
and 3 as shown in the Appendix. It should be noticed
that the influence of quantization of « is larger than the
quantization of 3, as shown in Figs. 5 and 6. Therefore,
the coefficient & is determined to exact values without
quantization and realized with small number of shift-
and-add operations.

Figure 5. Phase sensitivity to a for a = =1/2, 8 €
{0.1,0.2,...,0.9}

Figure 6. Phase sensitivity to g for a = —1/2, 8 €
{0.1,0.2, ...,0.9}
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4. APPLICATION

The adjustment of the common coefficient « is inde-
pendent of the filter order and transition bandwidth.
Practically, this means that (n — 1)/2 coefficients can
always be represented by a certain number of shifters
and adders. The second group of coefficients is easy to
adjust for the third-, fifth- and 7th-order filters. Ex-
plicit expressions for the third-order filters are derived.

Let start with known o3 = a and B;. Then the
auxiliary values are determined

Op = e P2 9)
T+ BV -ad)

r=—0n(140,)+ /on(on +2)(02 - 1) (10)

_ (14 2r)3
L= V 1=-r2Q0Q+r) (1)
/ 1+42r
Qa = ———————(1 + 1")3 (1 — r) (12)

From the following relations, the minimal stopband at-
tenuation and the edge frequencies can be determined:

aq = 10log(1 + L) (13)
1—as 2 14+ aq 1
Q, = t =-_——
T ltag mfa 1-agtan?nf, (14)

It is shown in Fig. 7 that a very good rather complex
filters are obtained by a cascade connection of lower-
order filters owing to the very small pass-band atten-
uation. They are suitable for the implementation of
linear-phase IIR filters in accordance with [4].

100
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Figure 7. Attenuation of cascade connection of fifth-
order filters a=-1/2, a;=-1/4, f=1/2-1/32, f3=1-1/8.

The procedure described is also applicable to half-
band filters, since their transfer function is also in-
cluded in this class of IIR filters [8]. In that case,
the coefficients o equal zero, as the poles are on the
imaginary axis. The procedure proposed in this paper
can also be used successfully for the lattice wave digital
filter structures from [9].

0
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Table 1. Multiplier coefficients (o and ) for f,353=0.5/3, f, ~ 0.153, f, ~ 0.18.

n o« o B2 O3 B4 ap(dB) a,(dB)
3 -1/2 -1/4 -1/4 0.238 11
5 -1/2 -1/4 1/2-1/32 1-1/8 0.0356 21
7 172 -1/4-1/64 1/4+1/3241/64 1-1/4-1/8+1/32 1-1/16-1/32 0.0026 30

Examples: Table 1 gives the data for 3 respective
examples of the third-, fifth- and seventh-order filters
for which f,4g=0.5/3, fp =~ 0.153, and f, ~ 0.18.

As can be seen, a cascade connection of several sim-
ple filters from Table 1 can yield a high stop-band
attenuation and a narrow transition band, with the
pass-band attenuation remaining low. For example, for
the linear phase filters from [4], the attenuation values
listed in Table 1 are multiplied by two.

5. APPENDIX

The first-order sensitivity of the magnitude response

ISIIH|| is defined as a partial derivative to an arbitrary
multiplication constant z

O|H ()|

oz

Sl (w) = (41)

It is given in [10] that the filter magnitude response can
be expressed by the phase difference (¢q(w) — ¢p(w)):

lH(ej“’)I = % |1 + ef(¢°(“)“¢b(‘”))l (A2)

where ¢4(w) and ¢3(w) are the phases of allpass net-
works. Equation (A2) can be written in the form:

|H(ej“’)| = fﬁ‘%ﬂ@l (A3)

CcOo8

The application of (A1) to equation (A3) leads to the
following expression for s

Odai(w O¢pi(w
(Zw) Zm())

(A4)
where k = sign(tan((¢a— ¢5)/2), 0¢4i/ 0z and d¢s;/0x
are the phases of the ith first- or second-order sections
whitch contains the multiplication constant .

6. CONCLUSION

This paper presents a straightforward approach for
multiplierless IIR elliptic filter design.

It is shown that a special class of elliptic filters, de-
rived from elliptic minimal Q-factor analog prototype,
has poles on a circle in the z plane. The implemen-
tation of those filters by a class of low-noise compu-
tationally efficient recursive digital filters, as parallel
connection of two allpass sections, provides a unique
property of multiplier coefficients. A half of multiplier
coefficients are equal to a common constant that is only
function of a single frequency fsap. By a selection of

. ¢a_¢b
1

sin 2

SIHI = d

2
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faap, the frequency at which the attenuation is 3dB,
between pass-band and stop-band edge frequencies in
the transition band, a common constant (and a half of
coefficient multipliers) can be designed with minimal
number of shift and add operations. This way, the el-
liptic property with a very small pass-band ripple is
obtained without quantization of a half of multipliers.

Using the sensitivity analysis presented in the paper,
the reminding half of multipliers may be designed for a
minimum shift and add implementation. This is easily
achieved for 3rd, 5th and Tth order filters. Due to a
very low passband ripple, the higher order filters of a
very good quality can be formed by a cascade connec-
tion of lower degree filters. This way, a sharp multipli-
erless filter of higher degree is obtained.
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