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ABSTRACT

This paper introduces a new set of exchange rules for a Re-
mez-like algorithm for the Chebyshev design of IIR digital
filters. It is explained that the essential difficulty, in ap-
plying the Remez algorithm to rational functions, is that on
some iteration, there may be no solution to the interpolation
problem for which the denominator is strictly non-zero in
the interval of approximation. Then the usual procedure for
updating the interpolation points can not be applied. The
new rules for updating the interpolation points address pre-
cisely this problem for the two-pole case. It is shown with
examples that, when the Remez-like algorithm of Hofstetter
et al. is applied to rational functions, there is a way to up-
date the interpolation points so that the algorithm converges
rapidly, even when poles arise in the interval of approxima-
tion.

1. INTRODUCTION

The Remez exchange algorithm for Chebyshev approxima-
tion by polynomials is successfully used for FIR filter de-
sign (in the Parks-McClellan algorithm [6]). Most notably,
it converges rapidly from any initial reference set. On the
other hand, the Remez algorithm for approximation by ra-
tional functions [7] is not guaranteed to converge from any
initial reference set. This limits the usefulness of the ra-
tional Remez algorithm, and has prevented it from being
more widely adopted. However, when it does converge, it
exhibits a quadratic convergence rate as in the polynomial
case. The failure of the rational Remez algorithm takes ona
specific form, described below. This paper describes a new
set of exchange rules (for the two pole case) that greatly
enlarges the region of convergence of a rational Remez-like
exchange algorithm. With the new exchange rules, conver-
gence can be achieved from initial reference sets that are
dissimilar from the extremal set of the optimal equi-ripple
solution.

2. INITIAL REFERENCE SET SENSITIVITY

Recall that the polynomial Remez algorithm proceeds by
iteratively performing the two steps:
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1. Solve an interpolation problem over a specified set of
points (the reference set).

2. Update the reference set according to a set of exchange
rules.

The interpolation problem is equivalent to a linear system
of equations (but efficient interpolation formulas can be
employed [8]). The reference set is updated by locating
the extremal points of the error function and selecting an
appropriate subset thereof. The rational Remez algorithm
proceeds in exactly the same manner. In the rational case,
however, the interpolation problem is equivalent to a gener-
alized eigenvalue problem [7], for which standard numeri-
cal techniques exist.

The essential difficulty in the rational case, is that on
some iteration, there may be no solution to the interpola-
tion problem for which the denominator is strictly non-zero
in the interval of approximation. In that case, the solution
to the interpolation problem contains singularities. Conse-
quently the standard exchange rules can not be applied, and
the algorithm can not be continued (see the figures). This is
precisely the way the rational Remez algorithm fails.

‘When singularities appear during the course of the algo-
rithm (i.e. not on the first iteration) it is sometimes pos-
sible to recover, by carrying out a systematic perturbation
of the reference set used on the previous iteration [12, 13].
However, this recovery technique is not applicable when
singularities appear on the first iteration, for there is no pre-
vious reference set to modify. The open problem, of how
to continue in this case, is addressed below by a new set of
exchange rules.

3. PREVIOUS WORK

The problem of best Chebyshev approximation for IIR dig-
ital filter design has recently been addressed by several au-
thors, see [1, 4, 15] and the references therein. Methods that
are not based on exchange algorithms tend to be computa-
tionally intensive, slow, and do not make use of the alterna-
tion theorem that characterizes optimal rational Chebyshev
solutions (see [7] for a characterization theorem). Methods
that employ exchange algorithms [1, 4, 5, 10, 11, 14, 15]
avoid this initialization problem by alternating between
passband and stopband approximation phases, by allowing
at most one zero to contribute to the passband shaping, or
do not address this problem.
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4. PROBLEM FORMULATION

To simplify the approximation problem, we consider the de-
sign of extra-ripple lowpass recursive digital filters. In the
symmetric FIR case, this subset of equi-ripple filters was
the first for which a Remez-like exchange algorithm was
developed; that algorithm is the algorithm of Hofstetter et
al. [3]. Restricting our attention to this class of equi-ripple
IIR filters simplifies the interpolation problem (the general-
ized eigenvalue problem is replaced by a linear system) and
potential degeneracy problems are avoided {12, 13]. The
design of this subclass of IIR filters is still affected by the
problem of singularities in the solution to the interpolation
step. Therefore, by considering this class of filters, we iso-
late the problem of singularities from other aspects of the
approximation problem. It also produces extra-ripple IIR
filters having more than one zero inside the unit circle, con-
tributing to the shape of the passband, as in [10].

Consider the design of an IIR filter having seven zeros
and two poles (away from the origin). We design the square
magnitude response, and use the mapping £ = cosw, 50
that the problem formulation is as follows. Suppose d, and
4, are given (specified by the user). Find
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F(z)= Qz) 1 +E?=1 ¢z
satisfying
0 i=1,3,5
Fle:) = is :‘= 2: 10 @
1-6, i=7,9
where z,,...,71o are the extremal points of F(z) over

[—-1,1] withzy = =l and 20 = 1. Letw, = ws and
wp = we; these frequencies are the interpolation points that
straddle the transition region. In the examples considered
in this paper, we will use §, = 4, = 0.05. It should be
understood that this rather high value is used for illustrative
purposes.

Given z,,...,710, the interpolating function F(z)
can be found by solving a linear system, or by using
more efficient interpolation formulas. The algorithm of
Hofstetter et al. computes the extra-ripple solution by
iteratively updating the points z,, .. ., z10. On each itera-
tion, those points are set equal to the new extremal points.
The solution, shown in Fig. 1, is an extra-ripple filter
having two zeros lying inside the unit circle, contributing
to the shape of the passband. The remaining five zeros
lie on the unit circle. The coefficients are B(z)/A(z) =
(0.3368,0.4674, 0.6155,0.3967, 0.0950, 0.0047, —0.1037,
0.0747)/(1.0000,0,0.8871). Because §, = 6, and an
equal number of points are assigned to the passband and
stopband, for this example, the solution is a spectral factor
of a (noncausal) halfband filter. Therefore, it could be used
for the construction of an orthogonal IIR 2-channel filter
bank.

Copyright 1997 |IEEE

Frequency response

808
2
=
« -
g 0.6
©
o
S0.4¢
o
(/5]
0.2t \/\
0 i A N n
o] 0.2 0.4 0.6 0.8 1
o/'r
Pole—zero plot
1t PR ST
ost A
P ,’l ° \
g | -.
o O ¢ i
© ) 1
§ \\ ° l’
05} J
~ \. . 3 . ,,/
-1 DR RS

-1 -0.5 0 0.5 1
Real

Figure 1. The extra-ripple IIR solution satisfying (1,2).

5. NEW EXCHANGE RULES

Suppose the initial reference set is chosen to be a set of
points uniformly spaced over [—1,1]. The rational func-
tion F(z) satisfying the interpolation requirements has two
singularities in [—1, 1], see Fig. 2. In the figure, the circular
marks indicate the interpolation points used to obtain F(z).
The vertical dashed lines indicate the location of the poles.
Denote the two poles by py, p2, with p; < p,. The presence
of these singularities precludes the continuation of the stan-
dard exchange algorithm. The exchange rules described be-
low, however, provide a method by which the algorithm can
be continued. It should be noted that singularities also oc-
cur in the rational Remez algorithm proper (where § is part
of the interpolation problem at each iteration).

Note that in Fig. 2, the two poles lie between z, and z.
In this case it has been found that the appropriate update
procedure updates z, and z;, by: z, « p; and z,  p3.
The remaining interpolation points are updated in the usual
manner [3]. The new interpolation points are indicated by
‘x’ marks. On the next iteration, F(z), computed using the
new interpolation points, shown in the inset, has no singu-
larities in {—1, 1], and the usual exchange algorithm yields

2210




the optimal solution in a few more iterations.

For a different initial reference set, F(z) is obtained as
shown in Fig. 3. As in the preceding paragraph, the rule
for updating the set of interpolation points is illustrated in
the figure. On the following iterations, the usual exchange
rules yield convergence in a few more iterations.

Figure 4 shows another initial reference set, the resulting
function F(z), and the proposed update rule. In this case,
the next iteration also contains two poles in the transition
region. The next iteration is shown in Fig. 5 where the up-
date rule is illustrated. The usual update rules suffice for the
following iterations, and convergence is quickly achieved.
This example shows that more than one iteration is some-
times required before F'(z) is free of poles in [-1, 1].

Figure 6 illustrates a case where one of the poles lies
away from the transition region. In this case, the rules
for updating the reference set can be more subtle. It be-
comes necessary to consider two cases. In the first case,
F(z) — 18, does not posses a zero between the two adja-
cent interpolation points that straddle the pole, see Fig. 6.
In the second case, it does, see Fig. 8. (Similarly for a pole
in the passband, but use F(z) — (1—}4,).) In the first case,
it appears, by investigation of many examples, that the two
interpolation points on either side of the pole should be kept
fixed, and the remaining interpolation points be updated, as
shown in Fig. 6. In the second case, the interpolation points
should be shifted away from the the transition region, as
shown in Fig. 8.

The case illustrated in Fig. 7 indicates the appropriate
exchange rule, when one pole lies in the transition band and
the other pole lies outside [—1, 1]. Examples have shown us
that, if the exchange rules for the cases where singularities
are present, are not carefully formulated, the iterations can
fail to converge to the sought solution.

Other cases, not covered here, are those cases where both
poles occur away from the transition region. These cases
occur when the initial reference set is even more dissimi-
lar from the optimal extremal set, than is so in the exam-
ples given above. The case, where the number of poles ex-
ceeds two, also requires further investigation. Note that the
number of poles must be even, in order to obtain an extra-
ripple solution [4], otherwise, a pole must lie on the real
line, which, when zeros also contribute to passband shap-
ing, can not produce an extremal point.

6. CONCLUSION

This paper has discussed a rational version of the Remez-
like exchange algorithm of Hofstetter et al, for the design
of IIR extra-ripple filters. Specifically, new exchange rules
have been described, that are useful even when the interpo-
lating rational function posses poles in the interval of ap-
proximation on the first iteration.
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Figure 3. The usual exchange rules give the extra-ripple
solution in a few more iterations.
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Figure 4. The next iteration requires another update rule. It
is illustrated in Fig. 5.
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Figure S. The usual exchange rules give the extra-ripple
solution in a few more iterations.

Copyright 1997 IEEE

Next lteration
—]

~)

Fix)

-1 —O:G 08 -&‘ -0:2 6 0.2 0:4 02! 0:0 1
X
Figure 6. The next iteration has a single pole in [—1, 1]; the

other pole lies on the real line, outside [—1,1]. The next
iteration requires another update rule. It is shown if Fig. 7.
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Figure 7. The usual exchange rules give the extra-ripple
solution in a few more iterations.
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Figure 8. The update rules illustrated in the previous fig-
ures, when used on the next iterations, and the usual update
rules on the following iterations, yield convergence in a few
more iterations.
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