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ABSTRACT

In this paper, we present an algorithm for the de-
sign of an optimal recursive digital filter with a spec-
ified magnitude frequency response. The method re-
quires O( N?) computations to design a filter of size N,
and exhibits numerical stability and quadratic conver-
gence to the optimum within five iterations. The mul-
tiple exchange iterative algorithm uses the Chebyshev
error criterion in the magnitude-squared frequency re-
sponse domain, and has been developed using the in-
terpolation theory and the alternation theorem for
rational function approximation.

1. INTRODUCTION

Recursive digital filters are considered superior to
nonrecursive filters in a variety of applications [5].
Generally, recursive filters can meet given frequency
response specifications more efficiently than others.

An important subclass of problems in filter design
is the case of magnitude response specification with-
out phase consideration. In most cases, these spec-
ifications are described using the tolerance scheme.
While practical methods for designing recursive fil-
ters for this problem exist for some specialized cases,
a general solution has been lacking.

A number of approaches have been developed to de-
sign recursive digital filters with magnitude specifica-
tions using the tolerance scheme. Some of these meth-
ods introduce additional constraints to simplify the
problem, thereby restricting their application [7, 9].
Other methods are either numerically unstable {2, 4]
or computationally expensive [3, 6].

Recently, an O(N?) algorithm, for a filter of size
N, was published [1]. The algorithm converges to
the optimal solution, is numerically stable, and does
not impose any artificial constraints; thus making it
generally applicable and practical for moderate size
problems. In this paper, we present an O(N?) algo-
rithm that is a substantial modification to the pub-
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lished method, converges quadratically to the optimal
solution and is numerically stable.

The rest of this paper is divided as follows: In Sec-
tion 2, we describe the characterization of the solution
and the major steps in our method. In Section 3, we
present the core algorithm in our method that allows
it to be O(N?). In Section 4, we present an example
illustrating the method.

2. FILTER DESIGN

A filter design problem specified using the toler-
ance scheme is generally stated as follows: Given
the ideal magnitude frequency response, I(w), for
w € © C [0,7], and a specified tolerance; find
the smallest recursive filter, with system function
H(z) = Hn(2)/Ha(z), that exceeds the specifications,
where H,(z) = E: " lha(m)z™™, and Hy(z) =

Yondy! ha(m)z™™, ha(0) = 1.

The filter has a magnitude-squared frequency
response in the form of H(w) = B(w)/A(w),
where B(w) = Y- N~!b(m)cos(wm), A(w) = 1 —

Zf:‘:—ll a(m) cos(wm), and the filter size is N =
Nn + Ng.

The desired filter is obtained as follows [1]: Trans-
form the specifications to the magnitude-squared do-
main, resulting in the desired function D(w); com-
pute the optimal coefficients for H(w); calculate a
minimum-phase H(z).

The optimal H(w) is one that minimizes the Cheby-
shev norm, || £ |= max,eq |E(w)|, for given values
of N, and N,. The weighted error, E(w), is defined
as B(w) = W(w)[D(w) — A(w)], w € Q, where W(w)
is the weighting function. The filter size is chosen to
be the smallest that allows H(w) to exceed the spec-
ifications.

Although computations can be performed in the
original domain, it is easier to transform the inde-
pendent variable w to £ = cos(w), thereby yielding

H(z) = D(z)/C(z), where D(z) = Z,I:’.":—ol dmz™,
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and C(z) = 1 — 3.4 enz™. Relevant variables
thus become functions of z, and parameters related
to w can be easily computed from those related to r.
_Our top level algorithm to compute the optimal
H{(w) is based on the alternation theorem for rational
approximation, which in our context states that the
necessary and sufficient conditions for optimality is
for E(z) to have N alternation points. In addition,
the optimal solution is the best approximation over a
discrete subset of size N [8]. The major steps of the
top level algorithm are described below:

1. Choose N valuesof 2, 71 < 22 < ... < TN.

2. Compute the optimal filter over the N frequen-
cies, and &, as described later.

3. Determine E(z).

4. If max |E(z)| % |6], find z; <z2<...<zN,the
largest N local maxima of | E(z)| with alternation
in sign and go to Step 2.

5. Otherwise, the filter designed in Step (2) is the
desired filter.

The next section describes an O(N?) procedure to
compute the optimal H(w) over the discrete set of N
frequencies. It should be noted that the top level al-
gorithm does not suffer from any degeneracies, even
though it may superficially appear to have conver-
gence problems. This is because theoretical issues re-
lated to degeneracy are not applicable in the filter
design problem.

3. ALGORITHM

Here, we briefly state our procedure to compute the
optimal H(z) over N fixed values of z, z1 < z2 <
... € zN: Choose r to minimize the difference be-
tween £(z) and (—1)'r at £ = zn, where for a given r,
H(z) is chosen so that E(z) satisfies E(z;) = (—1)'r
fori=1,2,...,N — 1. A descent method for solving
the one-dimensional minimization problem is utilized.
The resulting r is denoted by §. .

An O(N?) procedure for computing E(z) at z =
zn is summarized next. This procedure is based on
Jacobi’s method. In the following, A(z) denotes (z —
z1)(z — £2)...(x ~ z~-1) and v denotes D(z:) ~
(=1)'r/W(z;) fori=1,2,...,N - 1.

1. Compute 1, ¢3,...,cN,-1 by solving the set of
equations:
Z;Y:";Iumjcj =v, form =1,2,...,Ns = 1,
where um; = Yon. zhd T ™y /N (), and
Um = Ef’:'ll gNa=1=™y, /N (z;). Since this is a
Toeplitz system, it can be solved in O(N?) com-
putations.
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2. Calculate C(z;),s = 1,2,...,N. This is an
O(N?) process.

3. Use the Lagrange interpolation formula to com-
pute D(z) at £ = zn such that it satisfies the fol-
lowing: D(z:) = %:iC(z:) fori =1,2,...,N - 1.
This is an O(N?) procedure, and is conducted
using the following equations:

N-1
II (zi — zx)

k=1,k#i
TN wC(z) fwi(z — =)
va___zl 1/wi(z — i)

4. Calculate E(z) at £ = zn.

One should thus conclude that the above procedure
is an O(N?) algorithm. Closer observation reveals
that the overall method for recursive digital filter de-
sign is and O(N?) process, thus making our solution
to the nonlinear problem computationally compara-
ble to the Parks-McClellan method for the linear case.
Also, all the elements in the method are numerically
robust, thereby making the method stable.

4. EXAMPLE

In this section, we illustrate the algorithm using an
example. A lowpass filter with passband cutoff fre-
quency of 0.4m and stopband cutoff frequency of
0.67 is specified to have the magnitude frequency re-
sponse within a tolerance of 0.005 in the passband
and 0.01414 in the stopband.

In the magnitude-squared domain, the desired func-
tion, D(w), is unity in the passband and 1E — 4 in the
stopband. The weighting function, W(w) is unity in
the passband and 100 in the stopband. The required
Chebyshev error, || E || is < 0.01.

A recursive digital filter, with N, =5 and Ng =5
was designed with the indicated desired and weighting
functions. The Chebyshev error of the resulting fil-
ter is 0.0084, Figure 1 shows the Chebyshev errors of
filters designed at each iteration, and indicates that
the optimal filter is computed by the fourth itera-
tion. Figure 2 illustrates the weighted error function.
E(w), of the designed filter. The nine alternations
show that the filter is optimal. Figure 3 represents
the magnitude frequency response in dB. The mag-
nitude frequency response is larger than zero for all
frequencies in the stopband because the filter specifi-
cations are exceeded. Figure 4 shows the behaviour
of the magnitude frequency response in the stopband.

We have tested the method in other cases, and have
noticed that the algorithm converges quadratically to
the optimal solution in about five iterations.

w =

D(z) =
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Chebyshev Error in JB

Figure 1. Convergence of the algorithm.
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Figure 2. Weighted magnitude-squared error.
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Figure 3. Magnitude frequency response in dB.
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Figure 4. Magnitude frequency response in passband.

REFERENCES

{11 A. Alkhairy. Design of optimal iir filters with arbi-
trary magnitude. IEEE Transactions on Circuits
and Systems II, September 1995.

[2] F. Brophy and C. Salazar. Synthesis of spectrum
shaping digital filters of recursive design. IEEE
Transactions on Circuits and Systems, March
1975.

{3] S. Crosara and G. Mian. A note on the design of
iir filters by the differential correction algorithm.
IEEE Transactions on Circuits and Systems, De-
cember 1983.

[4] G. Deczky. Equiripple and minimax (chebyshev)
approximations for recursive digital filters. IEEE
Transactions on ASSP, April 1974,

[5] L. Jackson. Digital Filters and Signal Processing.
Kluwer Academic, 1989.

(6] E. Kaufman, D. Leeming, and G Taylor. Uni-
form rational approximation by differential cor-
rection and remes-differential correction. Inter-
national Journal for Numerical Methods in Engi-
neering, 17, 1981.

[7] H. Martinez and T. Parks. Design of recursive dig-
ital filters with optimum magnitude and attenua-
tion poles on the unit circle. IJEEE Transactions
on ASSP, April 1978,

(8] J. Rice. The Approzimation of Functions, vol-
ume 2. Addison Wesley, 1969.

[9] T. Saramaki. Design of optimum recursive digital
filters with zeros on the unit circle. IEEE Trans-
actions on ASSP, April 1983.

2227






