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ABSTRACT

Filtering signals sampled on a grid which is nonuniformly
distributed in the time domain is not a simple task since
the filter’s coefficients have to be time varying. They
must be updated at each sampling instant. The filtering
becomes even more complicated when it has to be optimal
(or at least suboptimal) in the sense of a certain design
criterion. In this paper we present an effective algorithm

for FIR filtering aiming at minimisation of the energy of

the filtering error signal. The approach provides a solution
which resembles Weighted Least Squares design method
for FIR filters of uniformly sampled signals.

1. INTRODUCTION

Discrete time signal processing concentrates, by and large,
on dealing with signals which are registered on uniformly
spaced time grids. Sometimes, however, there is a need
for operating on irregularly sampled signals. There are
two main reasons that such situations may occur:

e Firstly, due to technical problems, it is sometimes
difficult or even impossible to perform regular
sampling. If a signal is monitored on an “opportunity
to measure” basis, like occasionally happens in
astronomy or medicine, then the sampling grid is
irregular and special processing techniques may be
needed. Other examples include situations when a
significant proportion of samples, of an otherwise
uniformly sampled signal, is lost. This may happen
with very noisy radar observations if, during pre-
processing, some samples have to be discarded or with
a digital signal stored on a faulty media. If not all
samples can be recovered then one has to deal with a
signal sampled on an irregular grid.
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e Secondly, nonuniform sampling is sometimes
intentionally used by system designers. The principal
reason for doing so is to alleviate the frequency limits
which normally must be satisfied by the signal
spectrum in order to avoid aliasing. For an excellent
review of benefits which may be brought by
ponuniform sampling see [1]. Other recent pub-
lications on this topic include {2}],[3].

The main goal of this paper is to generalise the Weighted

Least Squares (WLS) approach, widely used in classical

“uniform” DSP for designing FIR filters, so that it can be

deployed for filtering signals sampled on a nonuniformly

distributed grid. Similar problem but restricted entirely to
uniformly sampled signals with lost samples has been

solved in [4].

2. BASIC NOTIONS

We assume that all signals considered are baseband and
bandlimited. Therefore there exists a bounded set Q
symmetric about zero which supports the spectrum of
each signal. The bandwidth B of signals supported by Q

is
B= Idm. 1
o

The input to the designed filter is denoted by x(z) and the
spectrum of x(¢) is X(0). G(w) is the ideal frequency
response of the filter. Hence the target spectrum of y(¢) -
the filter’s output - is

Y(@) = G(@)X(@). )

For practical reasons, it is assumed that at each stage of
processing only a limited number of irregularly
distributed samples of x(¢) is available. The sampling

instants appropriate for these samples are denoted by
ty, s,y . The nonuniform FIR filter operates on them

according to the following equation

2(t) = Qg X(8g) + @y X(tg ) ap_y X(t_y)  (B)
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Notice that the coefficients a;_;, have to be updated each

time t changes and a new value of z(t) is to be
obtained. The nonuniform FIR filter is thus time-varying.

3. DERIVATION OF THE FIR FILTER

The filter’s coefficients are selected in such a way that the
magnitude of the absolute value of the difference e(t)
between y(t) and z(t)

e(t) = y(t) —ap. x(ty) — a1, X(tp_y)—*

=~y *¥(te-y) (4)

is kept small. The right hand side of (4) can be expressed
with use of the inverse Fourier transform

1 N
ot) =5 [ X(o )(G(m )= 2 icexpljo(ty; =t »] x
Q i=0
xexp(jot)do = E:t— I X(o)F(o)exp(jot )do )
0

where
F(©)=G(©)-Ay:Zw®),

T
Aw,: = [ah A Y ]

and

Z o (@) = [exp(jo (t ~ ), exp(jo tey ~1) |-

Now, we can evaluate ‘e(t )I in the following way

le)| < % flx@)F@ko <
Q

Q

B
< %—n— J [lx@)F@)f do . 6)

The last expression in (6) has been derived using the
Schwartz inequality. It follows from (6) that it is a
reasonable approach to select the coefficients a,_;. in

such a way that the weighted integral of the squared
1
magnitude of F(®): E;LIX((O)HF((D)de is

minimised. This formulation of the filter design problem
closely resembles the WLS method for classical FIR filter
design [5]. A major problem with proper use of the WLS

approach is to determine the ideal weight IX (o )|2. In

most cases this will be replaced with an estimate since the
spectrum X(®) is rarely known accurately. Denote this
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estimate by V(®), which must be a real, non-negative
and even function. Note that the weight V(w) should

reflect the shape of |X (o )|2 rather than its size. This is

due to the fact that solutions to WLS design problems are
identical regardless of whether ¥'(®) or |glV'(0) (g #0)

is used. Hence, our task is to determine the values of
ap_;. i=0,1,--- N such that

_ b, 2
- ! V(@)F@) do %)

is minimised. The integral J is a quadratic function of
vector Apy.: J=Al MwAy, -2A0 K. +L
where

1
My =3 [V©)Zw@)Z )0 @)
Q
and

1 —_—
Kune =5 JV(m)G(w)sz(m)dm. ©)

In (9) Z;y(®) denotes the complex conjugate of
Z 5 (®) . The optimal value for Ay, is thus

Aw.=MpKuy.. (10)

4. REAL TIME IMPLEMENTATION

Filtering of nonuniformly sampled signals can be
performed by using formulas (3) and (8)-(10). However,
the computational burden associated with calculations
involved is enormous. To ease this problem further
analysis of (8)-(10) aimed at determination of a cheaper
way of calculating Ay, is necessary. Notice that by

expanding the right hand side of (8) we find out that the
element of the symmetric matrix M,y in the r-th row in
the s-th column is

MkN(r’s) = v(tk-nl - tk—s+1) = v(tk—.n-l - tk-r+l) ’ (1 1)

similarly by expanding (9) we obtain the r-th element of
Kiy. as

Kiv: (r) =ve(t —t4_44), (12)

where v(¢) and v;(¢) are the originals of V(®) and
V(0)G(o) respectively. Hence, when the filter is
implemented equations (11) and (12) replace (8) and (9).

It is also possible to simplify calculation of Mjy in (10).
The matrix must be inverted each time the sequence of



samples of the input signal is updated. There are two
elementary changes to this sequence - rejection of the last
sample and bringing a new one to the front of the
sequence. In any case the inverse of matrix M,, can be
obtained as a simple update of the previous inversion.
Here we provide the appropriate equations for updating
M, .
When a new sample has to be added to the sequence we
have to create M;il' ~+1 from My, . Notice that
w0) ¢
M = 13
E+1LN+1 [ ¢ My (13)

where
¢= [V(tk —ty) vt —tp,) vt "tL-N+l)] - (19)

Therefore by using the matrix inversion lemma [6] we get

1 -¢™™M™!
0H-6"M™! O-¢"M!
Mt =" Y e |09

+M™
v(0)-4 M9 W(O)-"M}

For the sake of simplicity matrix M in (15) denotes
M,y -

In the case of rejection of the last sample we have to
calculate M;y_, from Mjy. To do this we partition

Mj, as below

r
My =[BT E] (16)

and, again by using the matrix inversion lemma, we
express M;,'v_l as

T
My = ——B%—. an

5. EXAMPLE

The proposed method of signal fiitering is tested by
simulation. The example is prepared in such a way that it
also demonstrates the effect of alias suppression when
nonuniform sampling is used. The task is to filter a signal
whose spectrum stretches from 3 to 10 rad sec™. The filter
should reject frequencies higher than 7 rad. sec'. The
signal is sampled at randomly selected time instants using
an additive random sampling scheme [7] with the average
sampling frequency 15 rad. sec’. Notice that if the
sampling rate was constant and equal to this value then
aliasing would occur and no reasonable processing would
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be possible. A 20 tap FIR filter is used to perform
filtering.
The spectrum support set for this probiem is

Q=[-10 -3Ju[3 10]. (18)

The ideal frequency response of the filter is selected as the
following bandpass function

exp(-j3980) if3<jo|<7
0 otherwise

G) = { (19)
The weight V(e) is chosen as unity for all frequencies
sin(10¢) — sin(3¢) and

belonging to Q. Therefore v(¢) = "
i

sin(7(¢z — 3.98)) - sin(3(¢ — 3.98))
ve(t) =
n(t—-398)
x(¢) used in the simulation is

The signal

x(t) = 3cos(4t) + sin(5t) — 2 cos(9¢) . (20)

If a perfect filter was applied to this signal then its output
would be y(¢) = 3cos(4(f - 3.98)) + sin(5(¢ — 3.98)) . This
ideal output is compared against the samples of the actual
output of the filter generated on a very dense, uniform
time grid with sampling rate of 70 rad. sec'. This
simulation is repeated with a constant input sampling rate
(again 15 rad. sec’) The results of both experiments are
presented in Figure 1. Notice that the simulation results in
the second experiment are affected very much by aliasing.

6. CONCLUSIONS

A novel method of FIR filtering of nonuniformly sampled
signals has been presented. The algorithm has a compact
form and provides effective solution for short and medium
tap-length filters. The feasibility of the approach has been
confirmed by simulation.
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() (a) The “ideal” output of the filter (continuous line), and a
typical output of the actual filter (dotted line)-
nonuniform sampling case.

(b) Averaged (over 10 experiments) absolute value of the
0 . - filtering error - nonuniform sampling case.
0 5 'mu)E 15 0 (c) The “ideal” output of the filter (continuous line), and

the actual output of the filter (dotted line) - uniform
sampling case.

(d) Absolute value of the filtering error - uniform
sampling case.
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