EFFICIENT REALIZATION OF THE BLOCK FREQUENCY DOMAIN
ADAPTIVE FILTER

Daniél W.E. Schobben, Gerard P.M. Egelmeers, Piet C.W. Sommen

Eindhoven University of Technology
P.O. Box 513, 5600 MB Eindhoven, The Netherlands
D.W.E.Schobben@ele.tue.nl

ABSTRACT

In many frequency domain adaptive filters Fast Fourier
Fourier Transforms (FFTs) are used to transform sig-
nals which are augmented with zeros. The overall com-
putational complexity of these adaptive filters is mainly
determined by these windowed F¥Ts, rather than by
the filtering operation itself. This contribution prescnts
a new way of calculating these windowed FFTs ef-
ficiently. In addition, a method is deduced for im-
plementing non-windowed FFTs of overlapping input
data using the previously mentioned efficient windowed
FFTs. Also, a method is presented for implementing
the windowed FFTs in the update part even more effi-
cient.

1. INTRODUCTION

Large adaptive filters can be implemented with low
complexity using Block Frequency Domain approaches.
The resulting computational complexity of such a Block
Frequency Domain Adaptive Filter (BFDAF) is mostly
determined by the five (I)FFTs involved [1, 2, 3]. Of
these (I)FFTs, four (I)FFTs are windowed and one is
not. Windowed FFTs are transforms of which only
a block of @ input samples are nonzero. Windowed
IFFTs are inverse transforms of which only a block of
Q@ outputs is needed.

This contribution is concerned with the efficient im-
plementation of these transforms and is outlined as fol-
lows. First, an overview is given of the BFDAF. A new
method for efficiently calculating windowed (I)FFTs is
presented in Section 4. In Section 5 it is shown that
an FFT of overlapping data can be calculated using a
windowed FFT. An efficient method for implementing
the FFT and IFFT in the update algorithm is given in
Section 6.

The number of real floating point operations (flops),

- i.e. the sum of the real multiplications and additions,
will be considered as a measure of computational com-
plexity throughout. Also, it is assumed that 4 real mul-

Copyright 1997 |IEEE

tiplications and 2 real additions are used for 1 complex
multiplication.

2. NOTATION

Throughout, time and frequency signals will be de-
noted by lower case and upper case characters respec-
tively. A character which denotes a vector will be
underlined. Superscripts denote the vector or matrix
dimensions, a matrix with one superscript is square.
Also, A*, AT and A~! denote complex conjugate, ma-
trix transpose and matrix inverse respectively. Elemen-
twise multiplication is denoted by ®. The expectation
operator will be denoted by E{.}. The N x N matrix
identity and the K x L zero matrix will be denoted
by IV and 0%+L respectively. In figures, FFTs will be
depicted as boxes with a double line at one side. The
most recent time sample and the highest frequency bin
are at the side of this double line, so that splitting of
the input and output busses is depicted in a unique
way. :

3. BLOCK FREQUENCY DOMAIN
ADAPTIVE FILTER

Large adaptive filters can be implemented efficiently in
frequency domain using FFTs [1]. The BFDAF is such
a frequency domain adaptive filter and is depicted in
Figure 1. First the input signal z[«] is segmented into
blocks of length B by a serial to parallel converter.
Next, the segments are overlapped

zMkB] = (z(kB - M +1]...akB)T. (1)

The overlapping data is transformed to the frequency

domain using :

XM[kB) = FMzM[kB], 2
i 8l

with (FM),p = ¢ 32" for 0 < a < M and 0 <

b < M. The filtering comprises the elementwise mul-
tiplication of the transformed input data X™[kB] and

2257

the transformed weights W™ [kB]. The data is inverse
transformed by (FM)~! and a part of the result is
thrown away (windowed) because of the cyclic nature
of the FFTs. This yields the adaptive filter output

&°[kB)= (0>M~P17)(F*)~! (W [kB) ® X[k B)),
(3)
The residual signal vector r2[kB] is the difference be-
tween the adaptive filter output £%[kB] and the ref-
erence signal ¢P[kB]). This residual signal vector is
transformed using a windowed FFT, i.e. only B input
samples are non zero which yields

RM[kB) = FM (08M-BB)" 1B[kB]. (4)

Next an estimate of the gradient vector cM [kB] is cal-
culated which is needed for the update

CM[kB) = 2(2y [kB)) "' ® RM[kB] ® X*[kB], (5)

where (E:l [kB])~! is the elementwise inverse of the
estimate of the signal power which is defined as

P;'(kB] = #E{X"kB]® (X"[kB)*}. (0)

The update part is depicted in Figure 2 and the update
equation is discussed in Section 6. Irom the above it
follows that all Fourier transforms arce windowed, cither
at the input or at the output, except for the FFT in
(2) that transforms the overlapping input data. First
a new method is presented in the next section which
efficiently performs the windowed transforms.

4. EFFICIENT COMPUTATION OF
WINDOWED FFTS

A new efficient method for calculating windowed FFTs
of real data and windowed IFI'Ts that yield real data
is presented. Both the FFT length M and the window
length @ are assumed to be powers of 2. The number
of flops needed to calculate such an FFT and IFFT is
denoted as Yppr{M, Q} and ¥ippT{M,Q}. A win-
dowed length M FFT of real input data is defined as

XM = FM (Qf}?@) , (7)

with z@ defined by (1) with B = Q. Time indices
are suppressed to simplify notation. A radix-2 length
M Decimation In Time (DIT) FFT decomposition is
defined for 0 <! < M as [4]

FMy ZM z9 —jorkt
(A-)l - QM—-Q € M,
k

k=0

Copyright 1997 |IEEE

INNGEG
- B
overlap
gM[kB]
]:M
= '
—=r XM{kB)
M,
update W k5] \[
(}-M)-l
£P[kB] e L ¥
14X 5 (k8]
£°(xB] €
é[n]———s P é['c—B+1]<—5 P

Figure 1: Block Frequency Domain Adaptive Filter

kB —] [%M kB)
M

(FM)~1 F
=] ot
oM~
X o |
N

Figure 2: BFDAF update part

-1 Q

= (M Q) e~j2"7k}5
0 2%

M_,

—j27rL 3 :_L'.Q —j27r-A%
+ e M Z QM‘_Q e ,(8)
k 2k+1

where the subscript denotes the element that is taken
from the corresponding vector. The number of flops
needed to combine these two FFTs is denoted as ¥ ¢ {M}.
The total number of flops equals for M > 4 and Q > 2

Tppr{M,Q} = 2¥ppr {4, §} + Yo{M}. (9)

Stated in words this means that a windowed FFT is
split in two length & FFTs with window length £.

==0

2258

The combining is achieved by multiplying the result
of one FFT elementwise with elements of the Fourier
matrix FM and adding this result to the result of the
other FFT. This takes

To{M}=5M -8, (10)

flops. The FFTs are split until FFTs of length 2
remain with windows of length 2. The number of flops
needed to calculate a length 23t FFT is

vppr{3f.2} =3 -1, (11)

for Q < M. The overall complexity can now be calcu-
lated by inserting (11) and (10) in (9) which yields for
Q<M

log,(2)

20

SUppr {32} + Y 27 o5}
b=1

= 2Mlog,(Q) - TM - 3Q +8. (12)

YppT{M, Q}

When calculating IFFTs, a similar procedure can be
followed which yields

UrppT{M, Q) = M logy(Q) — 3M - 3Q +6, (13)

for @ < -"5"- Note that the FFT can be implemented
with even lower complexity for) = M than that in-
dicated by (12) by starting with lengths 4 FFT which
requires ¥ppr{4,4} = 6 flops. Also, a more efficient
implementation of the IFI'T is achieved for @ = M
and Q = % by starting with length 4 IFFTs which
requires ¥1ppT{4,4} = 8 and YppT{4,2} = 6 flops
respectively.

Four (I)FFTs in the BFDAF can be calculated us-
ing the windowed procedure described above. The FF'T
which transforms the overlapping input data does not
contain a window and will therefore be the largest com-
putational burden. An eflicient method for implement-
ing this FFT is presented in the next section.

5. EFFICIENT RECURSIVE
COMPUTATION OF FFTS OF
OVERLAPPING DATA

In this section a method is presented which performs
the FFT of the overlapping input data using a win-
dowed FFT with window length B. The overlapping
input data at time (k + 1)B can be written as

zM((k+1)B] = DY (™ [kB)+y) [kB)), (14)
with the windowed data vector

Y [kB) = (zB[(k+1)B]d-M%i[kB—M+B]> . as)

Copyright 1997 |IEEE

and D¥ a time domain rotation defined as
M-B,B

M_ (0¥
DB = (IB

Now the transform of the overlapping input data at
time (k + 1)B can be written as

IM—B
0B:M-B) . (16)

XM[(k+1)B) = FM DY (z™[kB]+y¥ [k B))
= FMDY (FM)~1(XM[kB] + FMyM[kB]). (17)

Thus, the transform of the overlapping input data at
time (k 4+ 1)B can be calculated from the sum of pre-
viously transformed data and the result of a windowed
FFT with window length B. Also, a time domain rota-
tion FM DY (FM)~1 must be performed. So, the result-
ing computational complexity will equal ¥pp1{M, B}+
¥roT{M, B}, with ¥goT{M, B} the number of flops
needed for the time domain rotation. Using the circu-
lar structure of DY yields DY = (D¥)? [5]. This time
domain rotation can be computed efliciently in the fre-
quency domain as

FMDY(FM)™! = diag{u™}, (18)
with M1
yM=]~'M<Ql) (19)

As FMDM(FM)-1 = (FMDM(FM)~1)B the k'th el-
ement of the main diagonal of FMDM (FM)~1 equals

((uM)x)B. For the diagonal matrix FMDY (FM)-1
then the next theorem can be deduced
M
uB
FMDY(FMy Y =diag{| : [}. (20)
M
uB

Thus, the rotation reduces to an elementwise multi-
plication in (17). Using that the rotation contains B
length M/B Fourier vectors and that both the left
and right operand of the elementwise multiplication are
Fourier transforms of real valued vectors the total ro-
tation requires ¥pyT{M, B} real operations

0 for 4 <8

YroT{M, B} = { 3M-16B for L >g - 2V
So, all five FFTs can be implemented with a computa-
tional complexity which is in the order of M log,(Q),

with @ the window length of the transform.
The size of the Fourier transform M is equal to or
larger than N + B — 1, with N the number of adap-
tive weights. The algorithm delay of the adaptive filter

2259

equals B — 1. For large adaptive filters in which only a
small delay can be tolerated, such as the adaptive echo
canceler, B will be small compared to the transform
size M. In this case, the filter length N will approx-
imately equal the transform size M. Therefore, the
FFT and IFFT in the update part take a dominant
amount of flops because the window almost equals the
transform size. Furthermore, the efficient implementa-
tion of windowed FFTs in Section 4 requires that both
the transform size and the window size are powers of 2
which is not the case. Therefore, 2 regular FF'Ts are re-
quired for the update part. The next section presents a
method to reduce the computational complexity of the
(I)FFT in the update part.

6. EFFICIENT COMPUTATION OF THE
UPDATE PART

The BFDAF update part is shown in Figure 2, with D
a delay of one block of data. Next, it is shown that the
computational complexity of the two (I)FFTs of the
update part can be reduced even further by using com-
plementary windowed (I)FI'Ts. The update equation
is

N
WM{(k+1)B] = FM (ON{.M——N) .
[wN[kB] + (INOM=NN) (FM)-1CM(kB]] . (22)
Next, (22) is written as
wM((k+1)B] = WM kB + WX [kB], (23)

where WX [kB] is equal to

o (T QM-N.N My—1 M

7 (e g) FICHIREL (21
This equation incorporates a time domain window of
length N. A more efficient method would be imple-
menting the complementary time domain window. This
is achieved by rewriting (24)

WX [kB] = CM[kB)
M (O oAM= My~1 1M

7 (Gpew) MM RB]. (29
The transform size M will now be chosen to be equal
to N + B, so that the time domain window in (25) is
of length B and the (I)IFI'T can be implemented using
the method described in Section 4. Consequently M
complex additions are required in stead of N real addi-
tions. In comparison to (24) a reduction is achieved of
lI’FFT{M,M} - ‘I’FFT{M,B} + N — 2M flops. The
corresponding modified update is depicted in Figure 3.

Copyright 1997 |IEEE

When using the complementary window and choos-
ing M = N+ B it is possible to shift all windows so that
they correspond with (7) without affecting the scheme.
Defining a windowed (I)FFT with the window at the
other side would be a less efficient solution.

oM Bl l WM k5]

(FM~! FM

Figure 3: Equivalent of BFDAF update part

7. CONCLUSIONS

A frequency domain adaptive filter contains five (I)FFTs
of which four are windowed. A new method is pre-
sented to implement the windowed (I)FFTs efficiently.
Also, it is shown that the non-windowed FFT of over-
lapping input data can be implemented as a windowed
FI'T and a time domain rotation. In addition, the up-
date part is implemented using a complementary time
domain window. The overall complexity of the BFDAF
is now determined by the five transforms which all have
windows of length B. The overall complexity of the
proposed implementation of the BFDAF is therefore
in the order of M log,(B), with M the Fourier trans-
form size. When non-windowed FFTs where used, this
complexity would be in the order of M log, (M) flops.

8. REFERENCES

1] P.C.W. Sommen. Adaptive Filtering Methods.
Eindhoven (Netherlands): Eindhoven Technical
University of Technology, June 1992. Ph. D. Thesis.

{2] D. Mansour and A.H. Gray jr. Unconstrained fre-
quency domain adaptive filter. IEEE Trans. Ac.
Speech and Signal Proc., 30(5):726-734, Oct. 1982.

[3] G.P.M. Egelmeers. Rea! Time Realization of Large
Adaptive Filters. Eindhoven (Netherlands): Eind-
hoven Technical University of Technology, Nov.
1995. Ph. D. Thesis.

[1] A.V. Oppenheimn and R.W. Shafer. Digital Signal
Processing. Englewood Cliffs, New York (USA):
Prentice-Hall, 1975.

[5] P.J. Davis. Circulant Matrices. New York (USA):
Wiley, 1979.

2260

