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Abstract: This paper analyses Bussgang blind
algorithms [1]-[5] in terms of the minimization of
an associated cost function. Then, two new blind
algorithms are proposed and evaluated by
computer simulation.

1. INTRODUCTION

Traditional Bussgang techniques [1]-[5]
are the oldest methods for channel blind
equalization. These methods can be interpreted as
stochastic gradient algorithms minimizing a
nonlinear cost function [6).

Figure 1 illustrates a data transmission
system using a blind equalizer.
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Figure 1 - Data transmission system

Bussgang algorithms can be written with the
following equations:

W(n+1) = W(n) + pu(n) e(n) U(n) 1

e(n) = gply(n)] - y(n) (2)

y(n)=UT(n) W(n) 3)
where:
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W(n)=[wo(n)....wL-1(n)]T is the equalizer weight
vector, at time n, wi(n) is the i-th equalizer
coefficient at time n, L is the equalizer length;
H(n) is the step-size of the algorithm, at time n;
gBl.] is a memoryless nonlinear function;
Um)=[u(n) u(n-1) ... u(n-L+1)]T is the vector of L
sample measurements received at the channel
output, and y(n) is the equalizer output.

So, each blind equalization algorithm is defined
by a special choice of ggl.]. When this nonlinearity
is chosen as the decision device D(.), we get the
well-known decision-directed (DD) algorithm.

The DD algorithm is often used in association
with another blind algorithm (for example, see [8]-
[9]), due to its simplicity and its good convergence
properties once the eye pattern is open [7]. That
leads to dual-mode algorithms. However, when
the channel eye is closed, DD adaptation should
be avoided, or at least improved. In [9], two
solutions are reported to achieve such
improvement: step-size normalization /adaptation,
and application of a big step-size.

From an analysis of. [1]-[5], it results that two
main approaches can be used for deriving
Bussgang algorithms. In the first approach [4]-[5],
the algorithms are obtained by minimizing a cost
function, as it is usually the case for establishing
adaptive algorithms. In the second approach [1]-
[3], the equations of the algorithms are a priori
chosen under the form (1)-(3) with a special choice
of gpl.], and a possible associated cost function is
then discussed. ) )

This paper is mainly concerned with the second
approach. In section 2, we define a general cost
function and derive the "exact" stochastic gradient
algorithm resulting from the minimization of this
cost function. The corresponding equations are
slightly different from equations (1)-(2). We give
the conditions under which our algorithm is
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identical to the algorithms of [4]-[5]. In sections 3
and 4, we discuss how DD/Sato's algorithm [1]-[2]
and Bellini's algorithm [3] are linked with our
general algorithm. Then, we propose a modified
DD algorithm and a modified Bellini's algorithm.
Finally, some simulation results are presented in
section 5 to illustrate the behaviour of the
proposed algorithms.

2. A GENERAL COST FUNCTION FOR
BUSSGANG ALGORITHMS

In this paper, we assume that the transmitted
signal x(n) is a PAM, iid, non-gaussian, zero-mean
signal, H(z) is a linear model, and ggl.] is a
differentiable function, or at least a piecewise-
differentiable function. Under this last
hypothesis, gBl.] will be written gf.].

Consider the following general cost function:
1
= 3 E{(g[y(n)] - y(n))z} (4)

where E[.] represents the mathematical
expectation operator.

The stochastic gradient algorithm resulting from
the minimization of the criterion (4) with respect
to the parameters vector W(n), is given by the
general equations (5)-(6):

AW(n)=W(n+1)-W(n)=

= ufly(m)] (gly(n)] - y(n)) U(n) (5)
_ 4 _ 9gly(n)]
fly(m)]=1- =501 (6)

Notice that equation (5) is slightly different from
the standard equations (1)-(2) due to the presence
of the term fly(n)}. In fact, a comparison of these
equations suggests that the term puf{y(n)) in (5)
could be viewed as a variable step-size.

The conditions under which the algorithms (1)-(2)
and (5)-(6) are the same, are given below:

gg(n) = g(y(n)) )
_q_ggly(n)] _
fly(m)l=1 @ - 1
ogly(n)] _
Ty 0 Vy(n) (8)
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Table I contains the expressions of g{.] associated
with the Bussgang algorithms of [1]-[5].

Table 1
rithms Associated E[y(n)]
| DD (1] D()
| Sato [2] S.signly(n)]
Bellini [3] see eq. (18)
Godard Rp - ly()IP + y(n)
_&1 = 2) [4]
Shalvi- y(n)2 + y(n)
Weinstein [5]
where:
E{x(n)?
S= —L——J 9
E[|x(n)|]
. _ if y(n)20
signly(n)] = {_1 if y(n)<0 (10)

Rp = E[lx(n)'zP ]/E['x(n)lp:' (11

In the following, we demonstrate how equations
(4)-(6) may represent the algorithms in [4]-[5].

For PAM signals, the Godard's cost function and

algorithm are respectively given by the following
equations [4]:

1 2
e =5 E{(Rp - Iy(n)lp) } (12)
Wn+1)=W(n)+

wpym|ym)P 2 (Rp - |y(n)[P)U(n)(13)

By replacing the Godard's gf.] defined in table I in
(4)-(6), and recalling that y(n) = sign[y(n)] Iy(n)I,
one get equations (12)-(13).

For real PAM signals, the Shalvi-Weinstein's cost
function [5] is given by:

Jg = (U2) E(y4n)) (14)
subject to E(y%(n)} = E{x%(n)) (15)

Notice that Shalvi-Weinstein's algorithm
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This minimization by means of the stochastic
gradient algorithm leads to the following
equation:

W(n+1) = W(n) + 24 y3(n) Un) (16)

By replacing the Shalvi-Weinstein's g[.] as given
in table I, in equations (4)-(6), one get equations
(14)-(15).

In the two next sections, we analyse under which
conditions the DD [1], Sato's [2] and Bellini's
algorithms [3] satisfy equations (7)-(8). To our
knowledge, this interpretation of the Bussgang
algorithms [1]-[3]) has never been addressed by
the literature. Surprising as it may seem, it has
always been stated, since the pioneering work of
[2]-[3] and until recent work [6], [10]-[11], that
equations (1)-(2) are associated to the
minimization of the cost function (4), without
mentioning the term fly(n)].

3. ANEW MODIFIED DD ALGORITHM

For PAM signals, the decision device D(.) is
generally a quantizer, so gl.] is not differentiable.
Consider the simple case of a 2-PAM signal,
where gf.] is given by (10). In order to enable our
mathematical analysis, we approximate the sign
function by an hyperbolic tangent h(y,p) with a
parameter P that tends to infinity [12]:

S (=)
sign[yl= lim h(y,B)= lim m(ﬁ)

Breo pee

Figure 2 presents h(y,B) and its derivative for
various values of B. Clearly, condition (8) is not
satisfied for every y(n). In fact, y(n) is
theoretically a zero-mean signal, so the derivative
g'(y) will take large values almost all the time.

As a consequence, the term pf(y(n)) in (5) will also
take large values. If we consider this term as a
variable step-size, algorithm (5) could be
compared to the traditional DD algorithm, which
is equivalent to equation (1) when gl.] is the sign
function. From this point of view, one may easily
understand the improvement of DD adaptation [9]
when the step-size is set to a big value.

Notice that all the above remarks also apply to
the Sato's algorithm.
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Figure 2 - Function h(y,B)

In this way, we propose a new modified DD
algorithm, given by equations (5)-(6) with g[.]
chosen as (17), § being set to a big value.

4. A NEW MODIFIED BELLINI'S
ALGORITHM

Consider the simple case of a 2-PAM signal, and
suppose a white gaussian convolutional noise of
power 62 [10). In this case, the Bellini's g(y) is
given by the following expression:

2 2
-(y-1) —(y+1)
(18)

g(y)= 2 2
(—(y-l) ) (-(y+1) )

exp| ——5— |+exp| ———5—

20 207 °

This g(y) and its derivative are quite similar to
those in figure 2. Clearly, (8) is not verified. We
then propose a new Bellini's algorithm given by
equations (5)-(6) with g(y) defined by (18).
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5. SIMULATIONS

In this section, we present some simulation
results to illustrate the behaviour of the two
proposed algorithms and to compare their
performance with that of the standard Bussgang
algorithms [1],[3], in terms of convergence speed.
A MA nonminimum phase channel given by H(z)
=1-2.6z"1 + 1.2z"2 was simulated, with a signal-
to-noise ratio of 40 dB. Monte-Carlo type
simulations were carried out with 30 input data
sequences x(n). Figures 4 and 5 present the
simulation results.
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Figure 4 - Comparison of DD and modified DD
algorithms
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Figure 5 - Comparison of Bellini and modified
Bellini' algorithms

From these simulation results, we can conclude
that the proposed algorithms converge more fastly
than the standard DD and Bellini algorithms.
However, we have to notice that the modified DD
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algorithm presents some problems for big values
of fy) in the transitory period.

6. CONCLUSIONS

Bussgang algorithms for blind equalization have
been analysed in this paper. An interpretation of
these algorithms in terms of the minimization of a
general cost function has been carrieed out. Two
new blind algorithms (modified DD and modified
Bellini's algorithms) have been proposed.
Simulation results have been shown to illustrate
the good behaviour of these new blind algorithms
that converge faster than their standard
counterparts.
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