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Abstract

Two-dimensional (2-D) adaptive digital filters
(ADFs) for 2-D signal processing have become a fasci-
nating area of the adaptive signal processing. How-
ever, conventional 2-D FIR ADF’s require a lot of
computations. For example, the TDLMS requires 2N?
multiplications per pixel. We propose a new 2-D adap-
tive filter using the FFTs. The proposed adaptive fil-
ter carries out the fast convolution using overlap-save
method, and has parallel structure. Thus, we can re-
duce the computational complexity to O(log,N) per
pixel.

1 Introduction

Two-dimensional (2-D) adaptive digital filters
(ADFs) for system identification, image restoration
and enhancement have become a fascinating area of
the adaptive signal processing. Since ADFs based on
2-D finite impulse response (FIR) digital filters give
us an optimum weight solution which minimizes a cost
function and are always stable, they have received con-
siderable attention.

The two-dimensional least mean square (TDLMS)
method is an attractive adaptation algorithm of the 2-
D FIR ADF because of its simple structure [1]. How-
ever, the 2-D FIR ADF based on the TDLMS suffers
from the large computational complexity. For exam-
ple, the N x N 2-D FIR ADF requires 2N? multipli-
cations per pixel for the convolution and updating the
filter coeflicients. Furthermore, since the TDLMS ba-
sically has a sequential structure, parallel processing
techniques cannot be employed.

In order to reduce the computational load of the
TDLMS, a 2-D block LMS (TDBLMS) has been
proposed[2]. The TDBLMS update the filter coeffi-
cients once for every block which consists of N x N
input pixel while the TDLMS updates for each input
pixel. As a result, the number of multiplications per
pixel can be reduced from O(N?) to O(N). Further-
more, the block processing enables us to make use of
the Fast Fourier Transform (FFT) for high-speed im-
plementation of the 2-D convolution. However, when
we implement the TDBLMS by hardware, the critical
path becomes long because of its sequential structure.
Furthermore, the stability of the algorithm depends on
the appropriate selection of the stepsize parameter.
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In case of 1-D ADFs, parallel ADFs utilizing the
DFT frequency sampling filter (FSF) bank [3] - [4] are
very attractive since we can completely avoid aliasing
problem. The computational complexity of the paral-
lel ADF's reduces to O(log:N) per input signal. This
FSF’s strategy has been extended to the 2-D case in
[5]. The 2-D block adaptation algorithm can be im-
plemented with parallel structure which yields shorter
critical path compared with the TDBLMS. Further-
more, the behavior of the algorithm is always stable
as long as the input signal is persistently excited [3].
However, since the block processing has been done by
the disjointed window, we cannot apply the overlap-
save method for the linear convolution, and it requires
a 2-D FIR filter of O(N?) complexity.

In this paper, we propose a 2-D block ADF with
reduced computational complexity, parallel structure
and stable convergence. In Section 2, we show a struc-
ture of the proposed ADF. 2-D overlap-save method
for linear convolution is explained. Section 3 defines
a cost function and drives an adaptation algorithm.
Section 4 compares the computational complexity of
the proposed method with the high-speed version of
the TDBLMS, and Section 5 shows a computer simu-
lation to verify the effectiveness of the proposed ADF.

2 Proposed 2-D Adaptive Filter

Figure 1 shows a 2-D system identification by using
a proposed ADF. z(u,v), y(u,v) and d(u,v) are an
input image, an output image and a reference image,
respectively. We assume that the unknown system is
an N x N 2-D FIR filter.

The dotted line part in Fig.1 carries out the 2-D
linear convolution by using the overlap-save method.
First, at the point (i), the input image z(u,v) is di-
vided into the set of blocks, whose size is 2N X 2N,
so as to have 50% overlap for horizontal and verti-
cal directions as shown in Fig.2 (a) and (b). Sec-
ondly, at the point (ii), the input block is transformed
into the frequency domain by the 2-D DFT to obtain
X,¢(i,7) where i and j denote the block indices, and
s and t are the number of the DFT bin. X,(3,7)

is multiplied by H,.(i,7) which is an estimated fre-
quency response of the unknown system H(w;,ws);

that is, ﬂst(i,j) = H(w1s,ws:) where wy; = 3—1’\’,3 and
Wt = é‘%t (s,t = 0,1,---,2N — 1). Finally, at the
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point (iii), Yy (i, j) is transformed into spatial domain
by the IDFT such that we can obtain the linear convo-
lution y(u,v) as shown in Fig.2 (c). The 2-D overlap-
save method results in the reduction of the computa-
tional complexity.

The process of the DFT in Fig.1 can be imple-
mented by a delay chain, decimators, and a DFT as
shown in Fig.3. D stands for a sampling matrix. It is
known that the DFT is a filter bank, which is called
the DFT-FSF bank (3],[4]. A frequency response of
the 2-D DFT-FSF in case of N = 2 is illustrated in
Fig.4. At the 2-D frequencies w;, and wy;, the fre-
quency response in Fig.4 is equal to zero except the
D.C. It means that X (i, ) are degraded by aliasing
except D.C. component when we use the maximal dec-
imation. By using the accumulators, we can pinpoint
the D.C. component; that is,

5 zx,t(p, ). (1)

p=1l¢=1

stz])

However, since the proposed method has 50% over-
lap with the adjacent blocks, the outputs of the deci-
mators are z(Ni—p,Nj—¢q) (p,¢=0,1,---,2N - 1).
This is not the maximal decimation. In this case, we
must modulate X,:(%,7) by Eq.(2) in order to shift
alias free component to zero frequency. Table 1 shows
the modulation frequencies at each bin in case of
N =2 (See Appendix).

Table 1 Modulation frequencies.

s\t 0
0 [(0,0) [ (0,n) [(0,0) [ (0,m)
LI [ (m,0) [ (m,7) [ (m,0) | (m,7)
2 _1(0,0) | (0,m) | (0,0) [ (0,7)
3 [(m0) ]| (mm) | (x0)] (mmn)

In general, the modulation can be achieved by
Xao(i,5) = Xoo(i, ) (- 1) CFIHEHD. (g

Then, the accumulators can pinpoint the DC signal of
X!,(i,7) to obtain X(i,7) in Eq.(1).
Assume that X (w4, ws;) denotes the Fourier Trans-

form of z(u,v). Since X,t§i, j) includes the signal
component at the discrete frequencies w;, and wsy,
X,:(4,7) is approximately equal to X (w4, was)-

As the same manner, we can estimate the Fourier
Transform of the reference image d(u, v):

ZZD (pq (3)

p=1q=1

D(wys,wat) =

Finally, the frequency response of the unknown sys-
tem is given by

D(wlsa wzt)
X (w1, wat) '

4)

H(wis,wa) =

We derive an adaptation algorithm which enables us
to estimate H (w4, wqt) in the following section.
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3 Adaptation Algorithm
We define the cost function for the system identifi-
cation at st-th bin as
i3

Jst(i,j) = ZZ“Dst(pa q) - ﬁst(iaj)j(st(pa q)|2]'
=1 g¢g=1
p' g )
By expanding Eq.(5),
Jot(5,) = Paw(i,5) — Hatli, 5)P5 5, 5)
- f{:t(i’j)pst(iaj)
+ HG,)Haliyg)rais)  (6)
where
i
Pdst(i’j) = Zzbst(pa Q)ﬁ:t(pvQ)a (7)
=1 q:l
pst(i’j) = ZZDst(pa q)Xst(p’ )v (8)
’I"st(i,j) = Z EXst D, q ;t(pa q)’ (9)
p=1g=1

and * denotes a complex conjugate.

The derivative of Eq.(6) with respect to H, (3, 5)
can be written as

dJst(ia ])
stt(iaj)
Let Eq.(10) be zero, then we get a least squared so-

lution H,.(i,). The proposed algorithm is shown in
Table 2.

—0 to 2F2ple 2 Proposed algorithm.

= —2p,s(i, ) + 275t(5, 5) Hot(5,5).  (10)

for s=
for t=0 to 2N-1
X(6,5) = Xe(i,§) (-1 (DTG
Dy(3,5) = Dau(i,5)(—1) TG+
i g
Xst(i)j) = szst » 4
p=14g=1
~ d J
Dst(iij) = ZZD;t(p’q)
p=1q=1
raeli,§) = EZXst p,0)X;(p,q)
p—lq 1
pst(iaj) = ZzDat(p, st p,
p=1q=1
ﬁst(iyj) = pst('iaj)/r“(i,j)

Since the cost function is defined independently in
each frequency bin, the proposed algorithm yields to a
parallel structure. The one tap least square algorithm
is always stable as long as r4 (¢, j) has a finite value.

2
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4 Computational Complexity

In Table 2, the number of additions and multipli-
cations depends on the block indices i and j. For
example, the number of additions is 4ij per filter tap.
The computational complexity becomes large when 4
and j are large value.

This disadvantage can be overcome by following re-
cursive equations.

Xot(6,5) = Xot(i = 1,5 1) + X (i, §)
+ Xlst(i - 17j) + X2st(i,j - 1) (11)

where

Xiat(i,5 = 1) = Xiali —2,5) + Xat(i - 1,5),
Xoot(iyj—1) = XKogt(iyj —2) + Xpeld,§ — 1)(12)

Dg(3,3) , rst(i,j) and py(i,7) in Table 2 is rewrit-
ten by the same manner. The recursive equations are
independent of the block indices ¢ and j.

The number of real multiplications per pixel of the
proposed ADF and the TDBLMS, which is assumed
to be implemented by using the fast convolution, are
compared in Table 3. Assume that the number of
taps of the 2-D FIR filter is N x N. A 2N x 2N
2-D FFT in Fig.1 can be realized with 4N?2 log, 2N
complex multiplications per block. Furthermore, we
assume that four real multiplications are equivalent
to one complex multiplication.

Table 3 Comparison of multiplications per pixel.

| | Proposed structure | TDBLMS ]
N [16(3log, N +10)[2] | 16 (5log, N +7)
16 3522 432
32 400[2 512
64 4482 592

[-] denotes the number of real divisions.
As shown in Table 3, the computational complex-
ity of the proposed parallel ADF is reduced compared
with the high-speed version of the TDBLMS.

5 Simulation Result

We define the normalized mean square error (MSE):

E[(d(u,v) —y(u,v
E[d(u,v)?]

where E[-] denotes an average operation. The MSE
curve is shown in Fig.5. Fig.5 shows that the precise
system identification and linear convolution is carried
out by using the proposed ADF.

MSE = 1010910[ ))2]] [dB] (13)

6 Conclusion

A 2-D parallel ADF with reduced computational
complexity has been proposed. It has been shown
that the computational complexity is reduced com-
pared with the TDBLMS. In addition, the proposed
algorithm is stable as long as the input signal is per-
sistently excited. The result of a computer simulation
has shown that the proposed 2-D parallel ADF has
good performance for the 2-D adaptive filtering.
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The 2-D system identification in Fig.1 is done by appeared.
the computer simulation in order to show the applica- A .
o A ppendix
bility of the proposed algorithm. The 2-D DFT of the input image z(u,v) is
[Conditions] K K . ,
Unknown system : zl,(u,v) = Z Z z(utp—K,v+q—K)e IR ope—itite
=0 ¢g=0
H(z1,22) = 0914+ 092625 + 0.3382;% + 0.4942] = (14)

+ 0.677z7 %21 — 0.843z72;% — 0.894,;2  Where K = 2N — 1. By taking the z-transform of

2 1 o o Eq.(14), the transfer function of the DFT in st-th bin,
+ 0.517z7 25 — 0.7772; “23 Gsi(21, 22), is given by
FFT size (is equal to the block size.) : 8 x 8 L& K g K _i2tgp _i2m
Input image z{u,v) :White Gaussian with the Gst(21,22) = Z Z B2y eIt PeTIIN Y,
variance of 1 and the mean value of 0. p=0¢=0
(The image size is 128 x 128.) (15)
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Thus, the frequency response of G(21,22) is

sin(wy — 2Es)N

Ga(wi,wa) = —
st(r,2) sing(wy — 2%s)
sin(w; — 25t)N
T“—zNgTo(whwz) (16)
sing (w2 — 33t
where

o 2N-1
0((01,(1)2) =g 1Tz 772

2N-1

Since X, (¢,j) in Fig.1 is a decimated version of
', (u,v), the amplitude spectrum of X(3,J) is

N-1N-1

1
lxzt(wl,w2)| = |F Z Z G st (Wi wh)
k=0 =0
X (wr g, wa)l
1 NN gin w; — 2nk — s
= ‘_2 Z Z c (w1 —2nk—ns
N? = o sing(2=F—%)

sin(wg — 2wl — 7t)

sin%(“’z -Zﬁl—wt )

I (17)

where W), = @32k 0 = w221l and we assume
that X (w;,w};) = 1 for simplicity.

For example, when N =2, s = 1and t = 0, Eq.(17)
yields

lem o sin{w; — 27k — )

Xfolwn,w)l = 13 ~
folen 1L L i)
sin(w, — 27l)
sin%(ug—zhrl)

l (18)

We can find an alias free point at the frequency w; =
mwe = 0. By evaluating Eq.(17) for s,t = 0,1,2,3 ,
Table 1 is obtained.

x(u,v) Unknown d(u,v)
System

|sel NX N He o)
® Jonxow

@

.. ] (2NX2N)
5 brr bt Paallel Dst (i)
| Algorithm
Xst(id) ﬁst(i,j)/}\
(X »IDFT y(u,v)
@) Ysl @p (iii)

---------------------------- 2D overlap-save method

Fig.1. Proposed ADF.
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Fig.2. 2-D overlap-save method.
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