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Abstract - Adaptive fault tolerance (AFT) has been
developed recently for achieving reliable performance of FIR
adaptive filters in the presence of certain types of hardware
failures. Previous studies limited the use of AFT to one-
dimensional FIR filter structures with simple ‘“stuck-at”
fault models that account for errors introduced into the
adaptive process by faulty coefficients that cease to adjust
properly. This paper considers a broader class of hardware
errors which, in addition to “stuck-at” errors in the
multiplier inputs, can be modeled by errors in the outputs of
both multipliers and adders. By including a simple circuit
that removes erroneous induced constants in the output of
the adaptive filter, adaptive fault tolerance can be extended to
a broader class of hardware failures.

1. Introduction

Adaptive Fault Tolerance (AFT) is a fault tolerant
design approach applicable to adaptive systems that makes
use of the inherent adaptive process as an automatic fault
tolerance mechanism [1-2]. Under normal operating
conditions adaptive systems, such as adaptive echo cancelers,
adaptive equalizers, and adaptive controllers, adjust their own
system parameters to reduce a specified error criterion.
Hardware failures in such systems would presumably hamper
their ability to minimize the error criterion to the greatest
possible extent. However, such systems will continue to
adapt their parameters to reduce this error to the greatest
possible extent despite the occurrence of hardware failures.
Since this is the case, it may be possibie to design a system
that makes use of the ongoing adaptive process to
automatically compensate for certain types of hardware
failures. This approach has been successfully applied to
finite impulse response (FIR) adaptive filter structures. The
primary advantage of AFT is that it can provide fault
tolerance in adaptive systems for certain classes of hardware
failures with relatively low hardware overhead compared to
those for traditional fault tolerance techniques.

Previous studies limited the use of AFT to one-
dimensional FIR filter structures with simple “stuck-at”
fault models that account for errors introduced by faulty
coefficients that cease to adjust properly. This paper
considers a broader class of hardware errors which are
modeled by errors in the outputs of both multipliers and
adders. It is shown that by including a simple circuit that
removes erroneous constant values in the output of the
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adaptive filter, adaptive fault tolerance can be extended to a
broader class of hardware failures.

2. AFT for FIR Adaptive Filters

In most of the published literature on AFT, the
concepts were developed for finite impulse response (FIR)
filters using vector space concepts. The impulse response of
a length-N FIR filter can be considered to be an element of
the vector space RN (or C, if the coefficients are complex).
Vectors of RN (or CN) can be represented as a linear
combination of N basis vectors which span the space. One
such basis consists of the set of standard unit vectors e,
where the ith element of €; is one, and the rest are zero.
This particular decomposition corresponds to the structure of
a direct-form FIR adaptive filter, where the weights of the
standard unit vectors correspond to the coefficients of the
adaptive filter which change with time to match some
desired response, i.e., the Wiener solution. If the time-
varying impulse response of the adaptive filter is given by
A(n) = [an), a,(n), . . . , aym)]", then the vector
decomposition just described can be written as

A(n) = a;(n) e, + ay(n) &,+ ... + ay(n) ey . )

Note that the right-hand side of Eq (1) is an adaptive linear
combination of N column vectors, each of dimension N x 1.

If a particular tap weight of the adaptive filter fails and
remains fixed at an incorrect value, the other coefficients
will not be able to entirely compensate for the faulty tap,
i.e., the Wiener solution will not be achieved because each
tap is used to span a different dimension of RN, specified by
the N basis vectors. This prevents an error in a particular
tap from being corrected by readjusting the values of the
other taps. However, the incorporation of one or more
appropriate, additional vectors would allow the coefficients
which remain functional to readjust and achieve the Wiener
solution. In this way, coefficient failures in an FIR adaptive
filter can be compensated for by adding extra coefficients
which, when taken with the other fault-free coefficients,
allow all of RN to be spanned.

For example, consider a three-tap, direct form, FIR
adaptive filter which has the following impulse response:

1 0 0
Am) = aﬁn)[O] +a2(n)[l] +a3(n>[0} @
0 0 1
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If one of the adaptive coefficients incurs a fault, the other
taps cannot be re-adapted to compensate for the failure.
However, adding a fourth adaptive tap, whose input is the
sum of the signals driving the original taps, results in a
length-3 adaptive filter with impulse response:

- 1 0 0 1
A(n) =a1(n)[8] +a2(n)[(1):| +a3(n)[(l)] +a4(n)[{] 3)

The presence of this additional adaptively weighted column
makes it possible for the remaining three adaptively-
weighted columns to match any Wiener solution when any
one of the four coefficients incurs a stuck-at fault. The
reason for this is that the 3 x 3 matrix formed by choosing
any three of the four columns in (3) is nonsingular. It
should be noted that this property will only hold for certain
choices of the additional vector as described later.

Most fault tolerant filter structures recently studied are
based on this notion of adding extra coefficients and using
the adaptive algorithm to automatically compensate for
faults in the adaptive coefficients. A filter structure with R
redundant coefficients, where R is greater than or equal to
one, has been developed. This structure is able to achieve
the fault-free minimum mean-squared error (MSE) despite
the occurrence of R coefficient failures.

A significant aspect of the way in which fault tolerance
is added to the adaptive filter is that the redundant
components form an integral part of the structure. All the
coefficients work together to match the Wiener solution, and
when some of the coefficients fail, the remaining functional
coefficients continue to operate normally until the Wiener
solution is again achieved. This is significant because it is
generally impossible to distinguish between the redundant
coefficients and the primary coefficients. The locations of
the coefficient faults, therefore, do not impact whether the
adaptive filter has the ability to converge again to the
Wiener solution, assuming less than R failures have
occurred.

The fault-free learning rate is an important
characteristic of a FTAF since it indicates the cost in terms
of a reduced convergence rate for including fault tolerance in
the adaptive filter design. In order to provide improved post-
fault convergence properties, a transform domain fault
tolerant adaptive filter (TDFTAF) based on the DFT has
been formulated in [3]. The structure, shown in Fig. 1, is
completely described by

Xem) =[X(m)00...0]" @)
V(n) = FpXe(n) (5)
y(n) = C(n)"V(n), 6)

where Xq(n) is a length M vector and C(n) is the vector of
M adaptive coefficients. If the power normalized LMS
algorithm is used to update the coefficients of the TDFTAF,
then the relevant equations are
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e(n) = d(n) - y(n) 0
C(n+1) = C(n) + e(n) fIV(n), ®)

where [ is a diagonal matrix of time-varying step size
parameters.

Mathematical analyses have shown that the fault-free
convergence rate of the DFT-based TDFTAF having a white
noise input be very nearly the same as for a standard direct
form filter [3]. This result guarantees that there is very little
penalty in convergence rate caused by providing fault
tolerance to the adaptive filter.

3. Faults in Multiplier Outputs

Although the AFT method described above is able to
achieve fault tolerance with respect to hardware faults that
result in stuck-at coefficients, more general methods are
needed to cover faults that may occur in the outputs of
multipliers, the outputs of adders, and the registers that hold
the intermediate values that are needed to form the filter
output. In this section, we will describe how the principles
of AFT can be extended to cover a broader class of faults that
include stuck-at errors in multiplier and adder outputs.

Refer to Eq (6), which characterizes the convolution that
produces the output y(n). In the present discussion adder
faults are not considered, and we will assume that the
registers containing samples of the input signal x(n), x(n-1),

. are also fault free. The registers holding the c,(n)’s can
cause faults in the system, but these registers are protected
by the AFT mechanism described above. However, the
registers used to store the multiplication products of Eq (6),
i.e. the ¢i(n)vi(n)’s, can also fail. Equivalently, stuck-at
faults that occur in the outputs of the multipliers would
result in the same condition.

Note that this class of stuck-at faults results in a very
different condition than stuck-at faults in the coefficients
themselves, which are the inputs to the multipliers. When
the coefficient is stuck but the multiplier itself is
functioning properly, the multiplier input v,(n) continues to
vary properly, with the effect that the output of the
multipliers remains correlated with the input signal.
However, when the multiplier output takes on a stuck-at
condition, a constant is induced into the filter output. This
constant provides no information to the adaptive filter
because it is not correlated with the input signal. It will be
shown later in this section that removal of such an induced
constant will allow the filter to re-adapt properly, based on
the original principles of AFT for the stuck-at coefficient
model.

Lastly, note that stuck-at faults in outputs of more than
one multiplier still result in the creation of an induced
constant. This condition of multiple errors is equivalent to
multiple stuck-at faults in the registers holding the
multiplication products.
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Equation (5) performs the transformation of the extended
input vector X (n) by multiplying by the transformation
matrix Fy,. Assuming that T, X, and the adders are not
corrupted, failures can occur in the registers holding the
product of these values. In any efficient hardware processing
scheme, registers are reused for successive calculations. For
example, the same register will be used to hold F;x(n),
then the quantity F,x.(n) + F,x.(n-1), and finally v(n).
Note that a temporary register is also not needed during the
addition because the output of the multiplication can be fed
directly into the adder, thereby requiring a single register to
produce vy(n), rather than M registers. All together, M
registers are needed to obtain the complete V(n) vector at a
given value of n. Finally, assuming that the appropriate
multiplier assignments are used, any combination of faults
in the M? multiplications will be equivalent to faults in the
M registers holding the components of V(n).

Equation (8) performs the update for the filter coefficient
vector C(n). With the technique of register reuse described
above, the values of each c¢(n+1), 1 =0, . . . , M-1 are
written into the same registers that stored c(n). Registers
holding the values of e(n), x(n), and I are assumed to be
globally protected; thus these values can be assumed to be
reliable. Also, separate registers are not needed to hold the
terms e(n) I V(n) because these terms can be fed directly into
the adder after the multiplication in complete. Again, note
that stuck-at faults in multiplier outputs can be traced into
the convolution product and characterized as induced
constants in the output of the filter.

To summarize, there are many other types of failures
besides faults in the coefficient registers which must be
handled properly if the principles of AFT are to be used
effectively in realistic fault tolerant designs. However, with
an appropriate multiplier assignment scheme all non-
coefficient register stuck-at faults can be modeled by
including induced constants in the convolution terms. The
only question remaining is whether the filter can re-adapt to
the correct Wiener solution after such constant terms are
induced into the filter output via hardware faults.

Regardless of its source, when a constant is induced into
the filter output due to stuck-at hardware failures, the filter
will not be able to cancel it because the constant is
uncorrelated with the input to the filter. The constant
remains uncanceled in the filter output, with the consequence
that the learning curve will converge to a constant level that
is usually much higher than the natural noise floor of the
system. The block diagram of Fig. 3 shows the induced
constant modeled as an independent signal that is additively
injected into the filter output. Figure 4 illustrates the
learning characteristic of the filter when a constant of value
10 is suddenly injected at iteration 200. Note that the MSE
jumps immediately to the value of this constant and remains
in the vicinity of this value indefinitely, due to the fact that
the filter is unable to cancel it.
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A simple circuit can be designed to estimate the value of
this constant, and to remove it by subtracting the estimated
value from the filter output. This procedure is illustrated in
Fig. 3, where the correction factor IFIX is added to cancel
the induced constant, thereby allowing the filter to continue
operating properly. Note that since

e(n) = d(n) - y(n) - CONST, )]

the expected value of e(n) provides an estimate of -CONST.
Therefore the average of e(n) can be calculated according to
the algorithm shown in Table 1, and periodically added into
the output as shown in Fig 3.  This procedure is
demonstrated with the experiment shown in Fig. 5, where
constant errors were induced into the filter output to
simulate stuck-at multiplier output errors at iterations 200,
600, and 1000. Each time a new error occurs the averaging
circuit produces a new correction factor to eliminate the
induced constant, allowing the adaptive filter to return over
and over again to the correct Wiener solution.

Although it is beyond the scope of this paper to discuss
fault in adder outputs, it can be noted that stuck-at errors in
many of the adders will produce induced errors in the filter
output that are similar to those produced by multiplier
output faults. However for adders, a single fault will
involve two or more product terms, and hence more than one
multiplier may be removed from effective operation by the
occurrence of a single adder failure. A thorough analysis of
adder faults will be the subject of a future publication.
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Fig. 1 Transform domain AFT filter structure.

Avg. Squared Error in dB

-300

Iterations

Convergence plot for the FFT-based TDFTAF being
driven with white noise having N = 10 and R = 2.
(Stuck-at fault in Tap 5 at Iteration 750)

CGONST FiX

ﬂ d(n)
x(0) ——y  W(n) " i
update
aigorithm
Fig 3. Block diagram of an adaptive filter with an induced

constant error and an additive correction factor FIX,
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Fig 4.

Fig 5.

Leamning curve for an adaptive filter with an induced
constant error of value 10.

8

iterations
Learning curve with an induced constant error at

iterations 200, 600, and 100 with a continuously
updated and applied correction factor FIR.

Table 1. Algorithm to Obtain FIX

sum = 0
For every NUM iterations
for i = 1 till NUM
sum = sum + e(n-i)

end
FIX = FIX + sum / NUM
sum =0

end.
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