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Abstract. In a stochastie resonance system,
additive noise and a nonlinear component
system permit the amplification of a weak
periodic signal, whenever the strength of the
noise is within a certain interval. For one such
a system with a nonlinearity consisting of a
threshold function, we define a measure of
goodness and, for the case of Gaussian noise,
we derive required intervals of noise variance
for stochastic resonance.

I. INTRODUCTION

Under the paradigm of Stochastic Resonance [1]-[5], a
class of models for physical systems that produce an
approximately periodic output when driven by a weak
periodic signal embedded in white additive noise, is studied.
Common characteristics of the models are the presence of a
weak periodic driving signal, a nonlinear memoriless
component system and additive noise. In order for the
output to have a periodic behavior, the strength of the
noise should be within a certain interval; this last
requirement is probably the reason for the name of the

paradigm.

II. A STOCHASTIC RESONANCE
SYSTEM

Consider the system in Fig. 1, with inputs the periodic
driving signal sy and noise ry, and output ty. r is white,

zero mean and t is a thresholded version of s+r. Assume s
to be a binary square (or approximately square) periodic
discrete signal with peak amplitudes A and -A, period N
and fundamental angular frequency wg = 2n/N. The signal

s is weak in the sense that A > 0 is less than the threshold
value U; only with the addition of the noise r, the output t
may be non zero. Too much noise will obscure the
periodicity of the output; too little noise will not make the
output non zero. Thus, the variance of the noise should be
within a certain interval.
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Fig.1. A Stochastic Resonator

Seen from another point of view, the signal t, is a
noisy version of the signal sy where the noise (not r) is

multiplicative and signal dependent, this makes difficult to
obtain statistics of t;, analytically.

II. RESONANCE

In an ideal situation, we have t; = sgn(sy). Since errors

arise when A + r < U and when -A + r> U, we define the
following measure of goodness for the system:

G=PA+r>U) -P-A+r>U).

Let F and f be the distribution and density probability
functions of r, when r has unitary variance. In the case
when the standard deviation is o we may write,

G(o) = F(U_;A ) — F(LL;A) [

For zero-mean noise with even {, F(0) = 1/2 and using
U - A > 0 we have that G is bounded above by 0.5. In
Fig. 2, assuming A = 1 and for several values of U, we
plot G versus o, for Gaussian noise. We say that the
system 1is in stochastic resonance whenever G is at least
25%: then, for A = 1, U must be less than 1.94. For a
state of stochastic resonance an interval of values of o is
required: for U = 1.5, the interval is given by, [1.05, 3.8],
for U= 1.7, [1.51, 3.53], for U= 1.9, [2.19, 2.99] and for
for U = 1.935, [2.49, 2.72], etc.
The curves in Fig. 2 can be used for the cases of a
signal strength A different from one: to a threshold level U
in Fig. 2 there corresponds an actual threshold U' = UA,
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Fig. 2. The measure of goodness, as a function of o. Note how the maximum of the curves
shifts to the right as U increases.

and to a deviation o in Fig. 2 there corresponds an actual
deviation ¢' = GA.

III. OPTIMAL NOISE LEVELS

Given the signal amplitude A and the threshold level U,
to find an optimal noise level o that maximizes G, we
differentiate Eqn. [1] and equate to zero obtaining,

1 _ -
of (U-AM(U=A)-(U+A) f(LEA)]=0

Solving the equation above for the particular case of a

Gaussian distribution, we obtain,

4AU
_ In UiA-U_ A
Gopt = ,U>A 2]

We have the following bounds for g pt:

SUTU=EY < opt< 5 U

For U much larger than A, ogpt bebaves approximately
linearly and independent of A:

which is a useful result: the optimal standard deviation of
the noise for resonance grows linearly with the threshold
level, independently of the amplitude of the signal.
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The system is not supposed to operate with strong
signals that is values of U close to A, nevertheless, we
have for U close to A,

2A

1

Topt =

IV. THE STATISTICS OF THE
OuTPUT

The output process is not stationary but cyclostationary
[6]. It consists of the repetition of white random vectors
thatis, {ty} = ... Ty, Ty, Ty, Ty ... where T;=[B, B

...Bland Ty =[C, C ... C]; the random variables in T1

being the thresholded version of A + r and of -A + r in
T2. Let M and N — M be the lengths of T1 and T2,
respectively. Denoting the thresholding function, with
threshold level U, by Ty,

B=T(y(A+r) and C=Ty(-A+r)

assuming that the output of the threshold function takes

values in {-1, 1} and letting,
p1=PB=-1)=1-PB=1) =FU-A)
p2=PC=-1)=1-P(C=1)=FU+ A),

the correlation function of the output is given by,
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Fig.3. Optimal noise level, as a function of the threshold level U.

R(n, k) = Elty tykl
=1 ifk =0,
=E2[B] = (1-2p1)2,
if0<[njn=sM-1, O0<[n+k[y<M-1, k=0,
= E2[C] = (1-2pp)2,
ifM<[nJN<N-I, M<[n+kjy<N-1, k=0,
= E[B]JE[C] = (1 - 2p1 X1 - 2py), otherwise.

V. APPLICATIONS

We are currently exploring two adaptive stochastic
resonance systems. First, for the simulation of a biological
system that checks for the presence of a weak periodic
signal within a certain frequency band, the threshold level
18 to be adjusted until there is a signal with large energy at
the output of the band pass filter in Fig. 4. In the
simulations we ran, for o € [1, 1.4] and A = 1, the energy
as a function of U peaks around U = 1.5; for frequencies
2nt/N within the band pass the energy is about ten times
the energy for frequencies off the band pass. Currently we
are working on an analytical characterization of the output.
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Also, we have considered systems where the strength of
the noise is modified according to several estimators of the
periodicity of t, see Fig. 5. In one case, we estimate the
period as the distance between clusters of ones, stopping
when the sample variance of such distances is small. In
another, based on the histograms of the distances between
consecutive 1's and between consecutive -1's. In the
simulations, for the cases of N = 8, 12 and 16, we obtain
estimates of N with an average error less than 4%. As
above, we are working on the derivation of analytical
expressions for the statistics of the output of the system

"~ VI. CONCLUSIONS

For the stochastic resonance system of Fig. 1, we have
defined a state of resonance and define a measure of the
quality of such resonance. We have given bounds and
approximations for the optimal strength of the noise, for
stochastic resonance. We have obtained an expression for
the correlation function of the output process, which is
cyclostationary. In simulations of potentially useful
stochastic resonance adaptive systems, we have found
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Fig. 4. Adaptive adjustment of threshold level U.
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Fig. 5. Adaptive adjustment of noise strength o.

agreement with the theoretical measures of goodness. We
are currently working on the derivation of further analytical
results, with the aim of making more precise and usable
the paradigm of stochastic resonance, at least in some
cases.
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