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ABSTRACT

A novel approach is taken for the estimation of the parameters
of a Volterra model, which is based on constrained optimisation.
The equations required for the determination of the Volterra
kernels are formed entirely from the second and higher order
statistical properties of the “output” signal to be modelled and
can therefore be classed as blind in nature. These equations are
highly nonlinear and their solution is achieved through a
Judicious use of reliably measured statistical features of the
signal to be modelled, in conjunction with appropriate
constraints and penalty functions. Examples are given to
illustrate the method and it is evident from those that this novel
approach is producing useful results in contexts that have been
hitherto unattainable.

1. INTRODUCTION

Considerable attention has been focused in published papers (for
example see [1-5]), on the subject of nonlinear signal modelling
by means of Volterra representations. The case in which the
input is assumed to be known, i.e. the non blind form of the
problem can be readily resolved by using the cross-cumulants
between the input and the output [1-3].

However, in a realistic form of the problem, only the output is
observable, and thus for any subsequent modelling we must use
only the measured output data. If the input is a general random
process it is extremely difficult if not impossible to find closed-
form expressions for the Volterra kernels. So far, a fundamental
assumption underlying many of the approaches to the problem
involve the fact that the "input" is assumed to be a stationary
random process with Gaussian statistics, an assumption which
allows a substantial simplification of the relevant mathematics. It
has been shown that, for a zero mean white Gaussian input,
nonlinear expressions for the linear and quadratic transfer
functions are given in terms of various spectral moments up to
third order (i.e. the bispectrum) of the signal {4-5].

The outstanding difficulty in such modelling is related to the
quest for finding solutions for these highly nonlinear equations
that yield the Volterra kernels.

In this contribution we employ a quadratic Volterra filter form
for the modelling of one dimensional signals.

In recent studies [4-5] we used the nonlinear equations that yield
the Volterra parameters to form an unconstrained optimisation
problem which was solved using Lagrange Programming Neural
Networks (LPNN) [6-7].
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In [8] another approach is proposed for the determination of the
Volterra kernels which is now based on constrained optimisation
using again LPNN. In [8] the new contribution is that we pay
particular attention to the reliability of the statistical measures
used in the process. Indeed, the second order moments are
known to be more reliable than higher moments. Use of this fact
is made in the construction of the constraints of the optimisation
problem.

In this paper we pay again particular attention to the second
order statistical measures but in a different sense. More
specifically we use the equations that relate the unknown
parameters of the model with the autocorrelations of the signal to
form a penalty function {9]. This function is incorporated to the
cost function and yields a so called Augmented Lagrangian
function. The method presented in this study belongs to a class
of optimisation methods called penalty-transformation methods.
These seem to provide better results to the Volterra parameter
estimation problem than the Lagrange methods, concerning
convergence and computational properties.

2. PRELIMINARIES

We represent the signal as the output of a non linear time
invariant causal system driven by noise x{n]. The Volterra
representation of the input/output relationship is given by

Anl=hy + 2 ylilin=i1 +E X hli, jIxdn—ilxn— /]
i i J

+ 23 XAl j kW —ilxn— jlxln — kl+...

i jok
where nlil, Mli,j1, Mli, j,k],... are the linear, quadratic,
cubic etc. filter weights or kernels respectively, h, is a constant
term whose value depends on the input x{n] and
0<i,j,k< N-1where N denotes the filter length [4-5].

The above is the discrete version of the functional form of a
nonlinear continuous time invariant system with memory which
was first studied by V. Volterra in the 1880's as a generalisation
of the Taylor series of a function.
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As a linear, time-invariant (LTI) system is completely
characterised by its unit impulse response, so a nonlinear system
which can be represented by a Volterra series is completely
characterised by its Volterra kernels. Also, arguing in a manner
similar to that for linear systems, it can be shown that the
nonlinear system is causal if and only if 4,[7;,7;,...,7,]}=0,

for any 7; <0, j=1...,n.
We consider in this paper without loss of generality symmetric

Volterra kernels only. A symmetric kernel is a symmetric
function of its arguments so that for n arguments 7y,7,,...,7,

interchanges  that  leave
Specifically, for

possible
unchanged.

there are  n!
hy[T1,72,...,T,1=0
n=2, hy[1,7,] is symmetric if 4[7,7]=m[%, 1]
However, in spite of the generality of the functional series
expansion of nonlinear systems, relatively few researchers have
attempted to identify from outputs alone any practical systems
based on this representation. This can be attributed to the
formidable amount of computation required and the difficulties
associated with the identification of the system’s kernels. Indeed,
identification of systems which contain anything higher than
second-order kernels is a very difficult task because of this
excessive amount of computation.

The second order Volterra filter is given by the following
relationship:

yinl= Yalil{n—i] +3. 3. bi, jixin ~ ilx{n ~ j]
i i j

where we assumed that 4, =0 without loss of generality [5]. By
assuming that the input signal x{n] is a discrete, stationary, zero
mean, white Gaussian process, the output process is also
discrete, stationary but non-Gaussian process and not necessarily
zero mean. To simplify the expressions we assume that the
output is zero mean in which case the following condition
Y bli,i] = 0 must hold.
!

3. SECOND ORDER STATISTICAL ANALYSIS

In this section the second order statistical analysis of the output
will be considered. The autocorrelation function of the real
process y[n] is given by R{k]= E{ynlyln+k]} and in view of
the second order Volterra model can be written as:

Rk)= Z_a[ilE{x[n —ibhin+k]}
+Y. ¥ bli, jIE{x{n — ilx{n - jhin + K1} m
i

The terms of equation (1) involve averaging over the product of
one, two, three and four Gaussian random variables. It is known
that the average of the product of an odd number of zero-mean
jointly Gaussian random variables is identically zero irrespective
of their mutual correlation. Moreover, the average of the product
of an even number of zero-mean jointly Gaussian random
variables is equal to the summation over all distinct ways of
partitioning the random variables into products of averages of
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pairs. For example, if xj,x,,%;,x4 are zero-mean jointly
Gaussian random variables, then:

E{xixyx3} =0 2

E{x1xyx3%4} =

E{x1x,}E{x3x4} + E{x1 23} E{x7x4} + E{x %4} E{x2x3} 3)

With (2) and (3), R[k] reduces to the form:

Rik1= B alilali+ k] +2B> 3, 2.0, j1bli + k. j + K] @)
i i

where B is the variance of the input driving noise.

The autocorrelation function given by (4) is not sufficient to
solve the problem because the number of unknowns present in
these equations is much greater than the number of useful
samples of Rf[k]. For example for the one dimensional case if
the kernels dfi] and b[i, j] have length N, then the number of
equations provided is N, while the number of unknowns is
N(N+3)/2+1. However, additional information can be
provided by examining higher order statistics [5].

4. THIRD ORDER STATISTICAL ANALYSIS

In this section additional information is shown to be provided by
examining the higher order statistics of the output, and this
information can be employed towards the solution of the
nonlinear equation.
If we define M[k,I] to be the third order moment sequence of
yin], then [5]:

Mk, = = E{yin]yn+k]yin+1]} 5)
In the following, the third-order moment sequence of the second
order Volterra filter is derived. First we use the following
symbols:
Gilk]l= Y alilxln~i + k] 6)

1

Golkl= 3. Y Bli, jiin—i+ klx{n— j +k] %))
i

Based on (6), (7) one can easily expand (5) in the following
compact form:

Mkl = E{Gl[O]Gl[k]Gl[l] +G[01G{[K]G,[1] +G[01G,{kIGy[1]
+Gy[01G,[k]G;[1] +G,[01G{[k1G\[1] +G,[0]G,[k]G,[1]
+G,[01G,[k1G[!] +G,[01G,[kIG, (11} 8
The first, fourth, sixth and seventh terms of (8) involve
averaging over an odd number of zero-mean jointly Gaussian
random variables. Therefore are identically zero. Equation (8)
then becomes:

Mik,l}= E{GI[O]Gl[k]Gz[l] +Gi[01G,[k1G[]) +G,[01G,[k1Gy[ 1}

+Gy[01G,[KIG, (11} )
Each term of (9) involves averaging over an even number of
zero-mean jointly Gaussian random variables. Keeping in mind
the procedure we described in the previous paragraph, one can
decompose the average of the product of an even number of
jointly Gaussian random variables into a summation of products
of averages of pairs. The first term of (9) (not using the fact that
i, j] is a symmetric kernel), can then be written as follows:
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ij
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Now we define ¢,[k,{] to be as follows:

$ifk,11= 3,3 alilaljBli +k, j +1]
i

It can be proven that

E{G,[0]G,[K1G, [1]}=2ﬁ2¢1[1,1 —k] (10)
Similarly, one can show that:

E{G,[0]G, [k]Gn[1]}=2ﬂ2¢1[k,k—1] (1)
E{G,[01G, [K1G, {11} = 2B ¢ [k, ~] (12)

The fourth term of (9) is quite different from the first three
terms. It involves averaging over the product of four Gaussian
random variables as well as averaging over the product of six
Gaussian random variables. The latter can be broken into the
sum of fifteen terms, where each term involves a product of three
averages of distinct pairs of random variables. An analysis of the
procedure is given in the Appendix.
By doing so and defining:
O2lx,y,2) = 3,3 ¥ bli, j1bli + %,k + yJblj +2,k]

ijok
we obtain:
E{G,[01G,[KIG, {11} = 8B, (1,1 k, k] 13)

which is valid only when Y bli,i]=0 or b[i,i]=0, Vi. In
t

other case equation (13) is more complicated.

We replace (10), (11), (12), (13) in (9) and we obtain M[k,[]. It
is now possible to use (4) in conjunction with (9) to provide a
sufficient number of nonlinear equations required to solve for
the unknown system parameters a and b and the variance of the
driving noise 8.

5. LAGRANGE PROGRAMMING
NEURAL NETWORKS (LPNN)

LPNN is a neural network primarily designed for general
nonlinear programming. The methodology is based on the well-
known Lagrange multiplier method for general constrained
optimisation problems. The essential components of the
approach are as follows [6-7].

Consider the following constrained nonlinear programming
problem:

Minimise X(f)

Subjectto Y(f)=0

where X:R" — R and Y:R” — R™ are given functions and

m< n. The components of ¥ are denoted ¥,..., ¥, . We can

n+m

define the Lagrangian function L:R"™" — R by

L(f,A)= X(NH)+AY(S)

where A € R™ is referred to as the Lagrangian multiplier.
The dynamic equations of the LPNN are then defined as:
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g

- VLo »A) (14)
dA _

7 =V L(S,4) 15)
where

t
VfL(f,l)=[%,%,...,difL;] and
!
Vi L(f,A) = [Fdﬂ%’:_;z”;_fm] , respectively.

If the network is physically stable, then the equilibrium point

(f*,A") defined by i=0 and d—}'=0, satisfies the
dt dt

equations:

VLA = V() + VY)Y A =0

VAL(fS A =Y(f")=0

and thus provides a Lagrange solution to the optimisation
problem.

Equations (4) furmnish a set of relationships for the
autocorrelations while (9) provide the third order moments and
both of those quantities can be estimated by standard means
from a given signal. We are seeking for the parameters {a[i]},
{bli, j/1} and B of a Volterra model that would produce these

second and third order moments.

The problem is therefore as follows: Given the autocorrelation
estimates p[k] and the third order moments estimates pu{k,/]
obtained from the signal directly, to determine {a[i1}, {b[i, /]}
and §.

5.1 Unconstrained Optimisation

In [4-5] we present a solution to the above problem in the LPNN
sense, which starts initially with a suitable cost function such as
the one given below

L(f) = Y(plil- R, /D2 + 3. S (uli, j1- ML, j, /)?
i [ )

From this cost function and in accordance with the above
formulations, the LPNN dynamic equations may be set up as in
(14). Notice that no constraints have been incorporated since the
above formulation allows any values of {a[i]} and {b[i, ]} to
exist. Thus the Lagrange parameters are set to zero, or the
corresponding Lagrange neurons are clamped to zero level.

In the above equation f =(a,b,f) is a vector formed by the

unknown parameters of the Volterra model and the unknown
variance of the driving noise. The signal flow graph of these
equations describes the required dynamic neural network
structure the steady state of which delivers the solution,

5.2 Constrained Optimisation

In [8] the minimisation is carried out under certain constraints
which we have chosen in a way to reflect the accuracy of our
measurements and of the estimation procedures. For finite
duration signals autocorrelations are more accurately estimated
than higher order moments, so a constrained nonlinear
programming problem is formulated as follows.
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Minimise:
L) = T 3 (uli, - ML, 1)
i j

subject to

plil= REi, f1
In this form we have a constrained optimisation problem for
which we form the following Lagrange function

LS A=UN+ZA (plil- R, f1)

The dynamic equations of the LPNN (which are the update
equations for fand A ) are now defined as in (14) and (15).

The stability of the neural network and the optimality of the
solution are guaranteed under some regularity and convexity
conditions [6],[7]. The method presented in [8] provides a
solution closer to the optimum than the unconstrained method in
[4-51].

5.3 Penalty Methods

In this study we pay again particular attention to the second
order statistical measures but in a different sense. More
specifically we use the equations that relate the unknown
parameters of the model with the autocorrelations of the signal to
form a penalty function [7]. This function is incorporated to the
cost function and yields a so called Augmented Lagrangian
function. The problem now has as follows:

L(f,2) = L) + S A{olil— R, 1) + e X (oli] - RU. /1)’

where {c;} is a penalty parameter sequence satisfying

0< ¢y <cpyy Vk, ¢ —> o0
The development of the above method was motivated by the
concept of maintaining implicit control over the violations of
constraints by penalising the objective function at points which
violate or perhaps tend to violate the constraints.

6. SIMULATIONS

In the simulations presented below we apply the new approach
and compare the results with the constrained approach in [8].
We use two different versions of the same synthetic one
dimensional signal which for our purposes is described by a
quadratic of the following form:
y{n]= x[n]+1.8x[n~1]+ 0.5x[n]x[n -1}

The first version is of size 1000 samples and the second of size
500 samples. We apply both the constrained optimisation
approach introduced in [8] and the constrained optimisation with
penalty term approach presented in this paper for the same
signal. We are dealing with nonlinear and nonconvex functions
so we might encounter difficulties concerning the convergence
of the algorithm. In this work we repeat the same experiments
starting from different initial points for the unknown parameters,
chosen to be in the attraction basin of the global solution that
can be approximately determined using simulated annealing
algorithms. The first table below shows the solutions arising
from the method which was presented in [8] for 1000 samples.
The second table contains the results for the same experiments
but using the procedure described in this study. The third and
fourth tables correspond to the same results but for 500 samples.
It is observed from the tables below that the new approach yields
improved results for both signals as expected also theoretically
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compared to the method in [8] and to the extent in [4-5]. These
results arise from a large number of tests involving different
signals.

parameter real value mean estimated value
al0] 1 1.12
afl] 1.8 1.83
b[0,1} 0.5 0.5075
B 1.5532 1.504
parameter real value mean estimated value
al0] 1 1.0265
afl] 1.8 1.825
b[0,1] 0.5 0.506
B 1.5532 1.5165
parameter real value mean estimated value
af0] 1 1.0949
all] 1.8 1.8379
b[0,1} 0.5 0.5839
B 1.5532 1.57
parameter real value mean estimated value
al0} 1 1.037
afl] 1.8 1.831
b[0,1] 0.5 0.55
B 1.5532 1.562
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