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ABSTRACT

A new set of non linear signal and image processing operators
is presented. Their definition is based on the introduction of the
statistical properties of Bayesian reconstruction in soft
morphological operators.

Statistical soft operators represent a trade-off between the noise
cleaning properties of statistical morphology and the shape
preservation properties of soft morphology. The main
characteristic of these operators is the individualization of two
parts within each structuring element (SE) according to soft
morphology (i.e. "hard” and "soft” SEs), and to define on this
basis a probabilistic estimation model which is a generalization
of the Statistical Morphology model.

Results are presented to show that the statistical soft
morphological operators can be considered robust to structured
noise, i.e. noise showing both statistical (e.g. additive Gaussian
noise) and morphological (e.g. noise with a particular shape)
structure.

1 INTRODUCTION

The definition of statistical soft morphological operators is
based on soft morphological operators [1] and statistical
morphological operators  [2]. Soft morphology, like
mathematical morphology (MM), considers the signal that has
to be processed as a set, whereas the statistical morphology is
based on a functional approach.

A relationship between these operators has been derived for
binary signals [3]. This paper aims at providing a more general
formulation, that is valid for multilevel signals.

Soft morphology is an extension of mathematical morphology;
the main differences of soft morphology with respect to MM
are:

- the definition of a composed structuring set which
individuates two structuring elements (SE): the hard SE AcB
and the soft one B\A,; besides, it is defined by a r parameter
that is related to the rank of an order filter;

- the elementary operations, which are in the soft morphological
case, a sort of rank order filters; e.g. the output of soft dilation
at m-th input is defined as the r-th largest value in the set
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{(Ff(a)y:a e A,  U{f(b):be(B\A),} (1)

where r0f (a) denotes the repetition operation of f{a) and A,,
is the structuring element A shifted at m-th position, whereas in
mathematical dilation we consider the maximum value in the
set

{f(b):be(B),}
The result of this formulation i1s that a greater weight is
associated with the input values that fall inside A with respect
to those which fall inside BM\A; this property allows one to
obtain less sensitive operators to small shape variations of the
object that has to be processed.
Statistical morphology (SM) is also an extension of the
mathematical morphology. Like MM, it considers a structuring
element B as an observation window on the signal, but the
output is defined according to a function-based approach that is
based on a probabilistic signal model {2]. This method uses the
Bayesian approach in order to define a probabilistic
generalisation of mathematical morphological max-min
operators. A parameter, B, is introduced to give different
weights to each element from the input set. The behaviour of
statistical operators changes by varying the J parameter; for
example, for statistical dilation, if § — 0 all the input elements
have the same weight, so a linear filter is obtained. When § —
o statistical erosion and dilation become mathematical erosion
and dilation. Using an intermediate f§ value, it is possible to
obtain operators determining a good smoothing level, that is
necessary for noise elimination, without degrading high
variations (such as the image edges).
Statistical soft morphology (SSM), which combines the two
above-mentioned techniques, is here defined. Statistical soft
morphological operators show the property of being able to
clean a signal that is corrupted by a structured noise, which
presents both statistical and morphological properties. An
example of this kind of noise is the speckle noise [6], which is a
kind of moltiplicative correlated noise affecting, for example,
Synthetic Radar Aperture (SAR) images.

2 ELEMENTARY STATISTICAL SOFT OPERATORS

The basic morphological operations, erosion and dilation,
consist in replacing the value of an input sample by the largest,
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or smallest, value in a neighbourhood set that is related to that
sample. Similar operations are perfonmed in soft morphology.
In the case of SSM, as in SM [2], we suppose that input

samples values are /; and the neighbourhood of each pixel i is
N;=N; ; with the property that N; ; =1 if the j-th sample

falls inside the SE B that is centred on the i-th sample.
To take into account the hard and soft part of the SE, the

neighbourhood set is divided into two complementary sets N,»h

and N that are related to hard and soft SE, with the following

properties:
N;=N!'UNf . Nt N =@
.| ifj e NI [ ifjeny

0 otherwise 0 otherwise

Let us consider the following events:

j € NP = {the j - th sample falls inside hard SE}

j € Nf = {the j - th sample falls inside soft SE}
Owing to the neighbourhood set characteristic, it is possible to

state that the je Nih and jeN{ events are mutually
exclusive, so the probability that a sample falls inside the SE B
is given by:
. . h .
P(jENi)=P(jeNi)+P(j€Nf) (2)
To obtain the winner-take-all (statistical soft dilation) for the i-
th sample, with analogy to SM, we introduce binary decision

units V, ;

such that Vi_j=l if the j-th sample is selected as
winner, otherwise V, ;=0.

The cost function that has to be minimized is similar to the
statistical dilation; taking into account the two different disjoint
SE, it is possible to write the cost function in the following
way:

E {VixN=E,[(Vigh ke NP 1+ E [V, )L ke Nf 1=

__zv N~ zv NEL; 3)

,Viy,,), and » is the number of

where {V,j} =(V,-'1.

samples that as to be processed.
We have to minimize the cost function with the constraint that

ZVil:l, because only a winner is allowed, so we obtain

Viw=1whenl, 21, for j#w and V, ; = 0 otherwise.

Analogously to SM, we have to define a statistical distribution

for {V,,}, owing to the property (2), it is possible to write:
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PV N =Pyl Lk € NPT+ P, [(Vig ke Nf] - 4)
For the definition of the joint probabilities F,{{V;}. keNh]

and P [{V,; ).k € N7}, according to Soft Morphology we have

to take into account the greater weight associated to the hard
SE, that is due to the repetition of the falling elements inside it.
First, we consider that the elements in hard SE have the same
weight as the elements in soft SE (this means that r = 1); with
analogy to SM, it is possible to write:

PV, k)N == {CXP[ B.E [{ feNh]]

If we consider that the falling elements in hard SE are repeated
by r times, it is possible to associate with them a r times higher
probability. This consideration allows one to write the
following probabilities:

Z{ex-pEf{Viem ]} ©

PV N == {exp[ BaE.[ Vi) jENV]]} @

P [V LN/ =

Z is a normalization constant and P, andf, are positive
parameters representing the inverse of the temperature in the
hard and soft SE respectively. Foliowing the method used by
Yuille et al.[2], it is possible to obtain the partition function at
location i:

Z= Z[r exp(ﬁlN,"_'jlj)+eXD(ﬁ2ijlj ] ®)
J

Now we can define the output of the dilation operator at the i-
th sample in the following way:

0y (B1.B2o7) = SN P [Vis =1V, j =0 ¥ j K]
k

From the property that is shown by eq. (2), it follows that it is
possible to express the output of the statistical soft dilation at
location i by means of two terms that are related to the hard
and soft SE:

0u(BrB.r) =3 (MuteP [V
+2{N§k1kpw[v,<,k =LY, =0Vj%k ke N‘]} (10)
&

From eqs. (6), (7) and (10) we obtain:
OW(BI’BZ’r) =

_y "‘N{’LILGXP(Bl Nl L)+ NIy exp(BaN ) (1)
k Zlr-N ,I Jexp(BlN,j 1;)+N; il exp(BaN; 1))
J

From eq. (11), we notice that it is possible to make the problem
easier by reducing the number of parameters; in fact, if we

consider the parameter ﬁ; that is defined as

BT =By +1n(r) (12)
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the output of the statistical soft dilation at location i can be

defined depending on two parameter only, i.e. By and By:
CXp(Bl klk)+ Nsle CXp(Bstklk)

j[ XP(BlNthI,)ﬂ‘Nf_j 1 exp(BaN; 1))

With similar computations, it is possible to obtain the output of
the statistical soft erosion at location i:

exp(=BIN/ 1) + NI exp(=ByNicly)
OI(BI vBZ) h s s
Z[C P( Blejlj N 1} eXp( BZN l])]

0, (Bi.B2)= ): (13)

(14)

Combining the bamc operation it is possible to obtain different
statistical soft operators; for example it is possible to define the
statistical soft opening (closing) by performing a statistical soft
erosion (dilation) that is followed by a soft statistical dilation
(erosion) in cascade.

3 EXPERIMENTAL RESULTS

In this section experimental results showing the capability of

the presented operators are shown.

Experiments have been performed on a signal which represents

a row of the Lena image (Fig.1). The signal was corrupted by

different type of noise:

a. i.i.d. Gaussian noise G(0,400);

b. 20% corrupting unpulsive noise;

c. structured noise; This type of noise was derived from noise
G(0,400) filtered by a mathematical opening; for this
filtering, two sizes of SE B were chosen: card(B)=3 and
card(B)=5 (Fig.2).

The following operations were performed to evaluate and

compare some filters:

a. smoothing operations through M filtering window such
that card(M)=3 (srmooth 1) and card(M)=5 (smooth 2);

b. median filtering through M filtering window such that
card(M)=3 (median 1) and card(M)=5 (median 2),

c. statistical soft openings with [3’1* =1.69, By =0.1 and
structuring set such that card(B)=5 and card(A)=3 (stat.
soft opening 1) or card(B)=7 and card(A)=5 (stat. soft
opening 2)

The evaluations have been done with SNR (Signal to noise

Ratio) value, MSE (Mean Square Error) value and with the

shapel error of order y by the masking element W that is

defined by Kuosmanen et al. [5] in the following way:

shi_err =i2 YIX ()= X (k)= (Y () - Y (k)"
N cew
where N is the number of samples that have to be processed, X
represents the reference signal and Y the signal that has to be
evaluated. We have considered card(W)=3 or card(W)=5, and vy
=2. Shape preservation is better when this parameter is smaller.
The SNR and MSE values show the noise level in the output
signal, whereas the shapel error shows the shape difference
between the uncorrupted signal and the processed signal.
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Experimental results show that smoothing filter provide good
noise cleaning when the signal is corrupted by Gaussian noise,
whereas median filters provide good results for signal that are
corrupted by umpulsive noise, as expected.

These filters fail when the signal is corrupted by structured
noise. Tables 1 and 2 show that the best results are obtained by
applying to the corrupted signals a statistical soft opening with
a structuring set such that the hard SE that contains completely
the structuring mask that was used to correlate the noise (i.e.
AcM).

Further experiments were performed on a row of a synthetic
SAR image that was corrupted by a simulated 2-look speckle
noise and the related results to noise cleaning effect are shown
in table 3. The speckle noise is a moltiplicative noise; due to
this characteristic, it is not easy to predict the expected local
shape preservation properties of the various filters, and,
consequently to evaluate them accordingly. Therefore, we chose
to evaluate only noise cleaning properties by means of a global
measure such as SRR. In this sense, from table 3 it is possible
to notice that statistical soft operators provide better results
then other filters.
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Fig.l  Original signal (256 samples)
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Fig.2  Signal corrupted by an additive structured noise
(i.i.d. Gaussian noise G(0,400) that is correlated by
means of a mathematical opening with a structuring
element B such that card(B)=5).
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4 CONCLUSIONS

Experimental results allow us to conclude that statistical soft
morphological operators are able to clean the structured noise
corrupting the signal preserving both the signal value (good
SNR or MSE arec obtained) and the signal shape (good
Shapel error). Results from signal that is corrupted by a
speckle noise suggest that a possible application of the method
could consist in the SAR image restoration.

From the performed experiments we have noticed that very
different results are obtained if the parameter values are
changed, so it would be possible to obtain good results even
applying statistical soft operators on a signal that is corrupted
by Gaussian or impulsive noise.
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Fig.3  Signal resulting from applying a statistical soft

opening ( ﬁ; =1.69, f, =0.1, structuring set such
that card(B)=7, card(A)=5) to the signal of fig.2.
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SNR [dB] MSE shi_err shl _err
w=3 w=5
Noisy 13.66 537.25 3380 9325
signal
Stat. soft 16.37 288.23 3728 8398
opening 1
Stat. soft 16.59 273.79 2994 5338
opening 2
Smooth 1 14.12 484.21 3475 8921
Smooth 2 14.34 459.72 3345 7873
Median 1 13.72 530.03 3272 9286
Median 2 13.75 527.18 3000 9011

Table 1 Results obtained from a signal corrupted by
structured noise with a M correlating mask such that
card(M)=3. Bold characters represent the best

results.
SNR [dB} MSE shi _err shl_err
W=3 =5
Noisy 12.24 745.08 4003 9325
signal
Stat soft 13.23 593.18 3578 8398
opening 1
Stat. soft 13.75 526.28 3160 5338
opening 2
Smooth 1 12.32 732.19 3507 8921
Smooth 2 12.34 728.95 3240 7873
Median 1 12.19 754.87 3971 9286
Median 2 12.28 738.57 3732 9011

Table 2 Results obtained from a signal that is corrupted by
structured noise with a M correlating mask such that
card(M)=5. Bold characters represent the best

results.
SNR |{dB] MSE
Noisy signal 8.23 1842.5
Stat soft opening 12.94 730.87
1
Stat. soft opening 13.76 605.70
2
Smooth 1 10.41 1310
Smooth 2 10.86 1181.8
Median 1 10.17 1382.5
Median 2 10.69 1227.6

Table 3 Results obtained from a signal that is corrupted by 2-
look speckle noise. Bold characters represent the best
results.
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