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ABSTRACT

The suitability of methods from multidimensional sy-
stems theory and digital signal processing for the efficient si-
mulation of time and space dependent problems has already
been demonstrated. Properly chosen functional transfor-
mations for the time and space coordinates turn a partial
differential equation into a transfer function description of a
multidimensional continuous system. It serves as the star-
ting point for the derivation of a discrete system which clo-
sely models the behaviour of the given continuous system
and which is suitable for computer implementation. This
concept is extended here to the simulation of nonlinear mul-
tidimensional systems. The essence of the presented me-
thod is a systematic way to turn a nonlinear partial diffe-
rential equation into a set of ordinary differential equations,
for which standard methods for the numerical integration
exist. This paper briefly reviews the linear case, points out
the various difficulties arising from nonlinearity and shows
how to overcome them. Numerical results demonstrate the
effectiveness of the method.

1. INTRODUCTION

Problems which depend on continuous variables like time
and space are generally modelled by differential equations.
If the quantities in this model are considered as input and
output signals, then such an idealized description is also cal-
led a continuous system. Purely time dependent problems
are described by ordinary differential equations (ODE), lea-
ding to a onedimensional (or lumped parameter) system.
Time and space dependent problems like wave propagation
or heat and mass transfer are represented by partial dif-
ferential equations (PDE), leading to multidimensional (or
distributed parameter) systems. These systems are called
nonlinear, if the coefficients of the PDE depend on the so-
lution itself.

The conventional way to simulate the behaviour of mul-
tidimensional systems is to apply finite difference or finite
element methods for the discretization of the time and space
variables. This leads to large systems of equations, which
have to be solved in each time step. Iterative methods are
most popular for this task. However, the computational
load is considerable, because a threefold loop is required in
the case of nonlinear systems: For each time step, a number
of iterations has to be performed, while each iteration step
needs an inner loop to resolve the nonlinearity.
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A recent alternative is the use of signal processing me-
thods for the numerical simulation of multidimensional sy-
stems. One example are multidimensional wave—digital fil-
ters [2]. A different approach is based on the description of
the continuous system by the generalized Fourier or Sturm—
Liouville transformation (SLT) [1, 3]. The application of
this transformation to the transfer function description of a
continuous system and the derivation of the corresponding
discrete simulation system is shown in [4, 6, 7] for the linear
case. A first approach to nonlinear systems is given in [5].

We will extend here the functional transformation me-
thod for the simulation of multidimensional systems to an
important case of nonlinear systems. To make the presen-
tation more comprehensible, we will restrict the problem
to one spatial dimension. At first, the linear case will be
considered. Then the difficulties introduced by nonlineari-
ties are discussed and a systematic procedure for turning a
nonlinear partial differential equation into a set of ordinary
differential equations is presented.

2. PROBLEM DEFINITION

As a simple example for a multidimensional system, we con-
sider the PDE

zo <z <711

y(z,t) — % (A'(2, 1))’ 0
yb(t) (1)
0

y(zo, t)
y(z1,t)

It describes e.g. heat transfer or mass diffusion processes
in one spatial dimension with material constants ¢ and A.
The independent variables are space r and time t. Prime
and dot denote spatial and temporal differentiation, respec-
tively. The solution y(z,t) is the time and space dependent
potential, e.g. temperature or concentration. Without loss
of generality, we set one of the boundary values y(zo,t) and
y(z1,t) to zero.

The system is linear when the material constants ¢ and
X are independent of y and nonlinear otherwise. The linear
case has been treated also for more general boundary con-
ditions, more spatial dimensions and other types of PDEs
in [4, 6, 7]. A more general nonlinear problem definition is
given in [5].
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3. LINEAR SYSTEMS

The general idea of converting a PDE into a set of ODEs
by applying functional transformations is best introduced
for constant material parameters ¢ and A. The PDE in (1)
is then linear

y(z,t) — ay’'(z,t) =0

with a = A/c. From the methods presented in [4, 6, 7]
follows, that a suitable generalized Fourier transformation

o <z <1 (2)

z1

T{u(e, )} = 9B t) = / Yz, )K(z,B,)dz  (3)

xo

takes here the form of a finite sine transformation with

. —1jx
K(@,8,) = sin(Bu(s—20)/Va), b = LT /5 e
(4)
This special choice of the transformation kernel K(z,8,)
yields the differentiation theorem

2
T @0} = Len - Za )
which is easily proven by repeated integration by parts. Ap-
plication of the transformation (3) and the differentiation
theorem (5) to the PDE (2) gives the desired representation
of the PDE by a set of ODEs, which can be written in the
standard form for numerical integration

§(Burt) = —Bud(Bu, ) + VaBuye(t) = f(G, 1) - (6)

Equation (6) can be solved numerically at discrete times ¢
for a finite number of spectral components 3,. The solution
of the PDE (2) can be recovered from the results §(8,, tx)
of (6) by the inverse transformation 7' to (3). Due to
the discrete spectrum and the orthogonality of the kernel
functions K(z,8,), T~! takes the form of an orthogonal
series expansion with respect to K (z, 8,):

T B0} = vlet) = 3 F- 7B K@), ()

where N, is a normalization factor. This series needs to be
evaluated only at the points in space £, of interest. Unlike
finite difference or finite element methods, no spatial grid
refinement is necessary in order to increase the accuracy of
the solution.

However, a potential drawback of performing the in-
verse transformation by evaluating a truncated series is the
possibility of convergence problems. They arise when non-
zero boundary values in (1) are approximated by a series of
sine—functions (Gibbs phenomenon). These problems can
be avoided by splitting the solution into two parts:

y(z,t) = u(z,t) + d(z,t) (8)

The first part u(z, t) fulfills the boundary conditions in (1)
and can be expressed in closed form as u(z,t) = uo(z)ys(t).
The second part d(z,t) is zero at the boundaries and the-
refore possesses a rapidly convergent transform d(8u,t) =
T{d(z,t)} (see [7]).

We can thus summarize the simulation procedure for a
multidimensional system given by the PDE (2)
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o Set up a system of ODEs by application of a suitable
functional transformation to the PDE.

o Integrate the system of ODEs by numerical methods.

¢ Subtract a partial solution #(8,,t) = T{u(z,t)} =
o (B )ys(t) to obtain a rapidly convergent series
T~Hd(Bu, t)}-

e Compute d(z,t) numerically by truncated series ex-
pansion at the grid points (z,, tx).

¢ Add the partial solution u(z,t) = uo(z)ys(t) and ar-
rive at the result y(z,t).

The structure of the system of ODEs is shown in figure 1.

ys(t) —¢
éﬁ\/‘;ﬂu

ﬁo(ﬁu)
uo(x)
¥ 7] ﬂ”,t -
@-’H 7 198 t) 7o ozt
d(Bu, t)
-8

Figure 1: Structure of the system of ODEs representing the
PDE (2)

4. NONLINEAR SYSTEMS

4.1. Problem Definition

Next, we consider the application of the functional trans-
formation method outlined above to the nonlinear problem

g(z,t)—-?ly)(,\(y)y'(x,t))’ = 0 m<z<m
y(zo,t) = yu(t)
y(z1,t) = 0
(9)

where the positive material constants ¢(y) > 0 and A(y) > 0
depend on the solution y(z,t). The nonlinearity thus intro-
duced demands special attention to the following points:

¢ The nonlinear operator of spatial derivates in (9) has
to be converted to a form more amenable to the ap-
plication of functional transformations.

¢ Criteria for the choice of a suitable functional trans-
formation have to be defined.

¢ Potential convergence problems for the inverse trans-
formation have to be identified and considered.

These problems are addressed briefly in the sequel.

4.2. Conversion of the Nonlinear Operator
A transformation of the variable y(z,t) of the form

(2,8}

w(z,t) = Aly(z, )} = / An)dn  (10)
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converts the PDE in (9) into the familiar form (see (2))

w(z, t) — a(w)w"(z,t)
w(zo, t)
w(zy,t)

0 zo<z<m
(z)vb(t) =A{w(t)}  (11)

with @(w) = a(y) = AMy)/c(y). We now solve (11) for
w(z,t) and finally recover y(z,t) by the inverse mapping
y=A"{w}.

4.3. Functional Transformation

Although the PDE (11} is of a very similar form as (11) for
the linear case, it is not straightforward to find the trans-
formation kernel of a functional transformation for w(z,t)

T{w(z,t)} = ®(8,,¢) =/ 1 w(z, ) K(z,B,)dz, (12)

zo

since the coefficient @(w) depends on the desired solution w.
The transformation kernel K(x,3,) has to be chosen such
that the transformation of the nonlinear term d(w)w"(z,t)
in (11) can be expressed by @(8,,t) in a form similar to the
differentiation theorem (5). In order to develop criteria for
a proper choice of the transformation kernel, we apply (12)
to a(w)w"(z,t) and integrate by parts twice

T{a(w)w"(z,t)} = /’1 d(w)w"(z,t)K (z,B8,)dz (13)

=A+ A+ / l w(z’,t)(&(’(D)K(a;,’Bp))Il dr (14)

Zo

with the abbreviations
A = [w'(z,H)a(w) — w(z, t)d' (w)]K (2, ﬁu)|:; . (15)
A = —uw(z,t)a(w)K'(z, ;3,,)|:: = wy(t)a(wo) K'(zo0, Bu)
(16)
The integral term in (14) could be turned into a transfor-
mation (12), if we were able to express (&(w)K(z,8,))" by
a term proportional to K(z,8,). Due to the nonlinearity of
the problem, any such expression would depend on w and
consequently, no general solution is attainable.
To circamvent this problem, we split the nonlinear co-

efficient @(w) into a constant part Go and into a part &;{w)
which contains the dependence on w

a(w) = do + d1(w). 17)

In many cases, such a composition is suggested by the pro-
blem at hand. For example, if G(w) is obtained by a trun-
cated Taylor expansion, then &(w) = @o + @1 - w, where ao
and &, are constants. Application of (17) to (14) gives

T{a(w)w"(z,t)} = A1 + A2 + As + B(Bu,w)  (18)

with

Az = /Il w(z,t) (G K" (z,8u))dz,  (19)

0

B(Bu,w) = /Il w(z, t)(d (w)K (z,84))" dz . (20)

[¢]
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Now we observe, that (18) takes a much simpler form, if
K(z,8,) is chosen as the solution of the Sturm-Liouville
problem

50K”(-’5» Bu) = _,3;2;1{(5’71:3;1) s (21)
K(zo,8s) = O, (22)
K(.‘L‘l,ﬂ“) = 0. (23)

The solution of this homogeneous boundary value problem
yields the same transformation kernel as for the linear case
in (4). The effect on (18) is twofold: A; vanishes due to the
homogeneous boundary conditions, and As can be replaced
by —B2@(By,t). The result is an expression which is very
similar to the differentiation theorem (5) for the linear case
with a replaced by éo.

T{&(w)w"(x, t)} = (24)
—Ba®(By, t) + wo(t)a(ws) K (o, By) + B(Bu, w).

At this point, we have established the criteria (21-23)
for the choice of the transformation kernel and we have ob-
tained an expression for the transformation of the nonlinear
term &(w)w"(z,t) in (11). Now we are ready to apply the
transformation (12) to the PDE (11). The result is a set of
ODEs

B(But) = —B20(B, t)+a(wb)%wb(t)+3(ﬂm w). (25)

The structure of this system of equations is very simi-
lar to the linear case (compare (6)). The nonlinear coeffi-
cient @(w) accounts for an additional term B(8,,w) which
depends on &;(w) and cannot be resolved by a functional
transformation. However a further analysis reveals, that
B(Bu, w) may also be expressed in terms of @(8,,t). The
result is a system of ODEs which differs from (6) in two
aspects:

e it contains nonlinear differential equations,

o the equations are coupled, i.e. each single equation
contains terms @(8,,t) with different values for u.

4.4. Convergence

Potential convergence problems are taken care of in the
same way as for the linear problem by splitting the solu-
tion into two parts (see (8)). This separation has also to be
considered in the treatment of the nonlinear term B(8,, w).

A slightly simplified version of the final structure is
shown in fig. 2. It differs from fig. 1 only in the influence
of the boundary value and in the presence of the coupling
term B which is derived from B(8,,w) in (25).

5. NUMERICAL RESULTS

As an example, a heat flow problem in a solid with tem-
perature dependent thermal diffusivity according to (9,11)
was studied. A reference solution was calculated by a fi-
nite difference method (FDM) with small space and time
step sizes. The boundary value ys(t) in (9) is defined pie-
cewise by a ramp followed by a constant value (see fig. 3).
The corresponding dynamical temperature variation starts
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wb(t)

Uo (ﬁu)

UQ(.Z)

7! w(z,t)

Figure 2: Simplified structure of the system of ODEs repre-
senting the nonlinear PDE (11)
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Figure 3: Reference solution of the example problem in
normalized coordinates

at t = 0 from zero temperature and approaches a steady
state solution, which shows a curved spatial dependence,
thus displaying the nonlinear character of the problem.

The PDE was numerically solved at the grid points
shown in fig. 3 with the FDM which was also used for the re-
ference solution and with the functional transformation me-
thod (FTM) explained in this paper. Both methods allow
to trade off accuracy against computing time: The FDM
by decreasing the space and time step sizes and the FTM
by increasing the number of eigenvalues B, involved in the
series expansion of 7" in (7). In both cases, the maximum
of the deviation from the reference was recorded and plot-
ted against the computing time necessary to achieve this
approximate solution. The FDM achieves a higher accu-
racy on a finer grid (indicated by subsampling factor r = 2)
only at the cost of extended computing time. The FTM gi-
ves the same accuracy at much less computational expense
by a moderate increase in the number M of eigenvalues
B,. These results were obtained with MATLAB on a SUN
Sparc 20.

Copyright 1997 IEEE

deviation from reference solution

10
computing time in s

Figure 4: Comparison with Finite Difference Method

6. CONCLUSIONS

Transformation methods for the simulation of multidimen-
sional linear systems can also be applied to nonlinear pro-
blems defined by partial differential equations. The key is
the decomposition of the nonlinear operator into a linear
and a nonlinear part. The linear part determines the kernel
of a functional transformation, which allows to formulate
the nonlinear problem as a set of ordinary differential equa-
tions (ODEs). The transformation plays an essential role
in the calculation of the ODE coeflicients and the determi-
nation of the solution in the original domain. The inverse
transformation can be computed efficiently from a rapidly
convergent series through a suitable separation of the solu-
tion.
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