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ABSTRACT

In this paper, we statistically optimize a well known
class of IIR two channel orthonormal filter banks
parameterized by a single coefficient when subband
quantizers are present. The optimization procedure is
extremely simple and very fast compared for example
to the linear programming method used in the FIR
case to achieve similar compaction (coding) gains.
The special form of the filters assure the existence
of a zero at m which can be important for some
wavelet applications and eliminate some of the major
concerns that arise in the FIR design case. Finally, the
compaction gain obtained is high and numerically very
close to two (ideal case) for low pass spectra, high pass
spectra and certain cases of multiband spectrum. For
these cases, the use of higher order IIR filters does not
increase the compaction (coding) gain.

1. INTRODUCTION

There has been a considerable interest in designing
filter banks while taking into account the effect of
subband quantization [1], [2], [3]. Given a fixed budget
of b bits for the subband quantizers, the goal is to
simultaneously optimize the analysis and synthesis
filters and to choose a subband bit allocation strategy
such that the average variance of the error e{n) at the
output of the subband coder is minimized.

The energy compaction problem. Consider the
scheme of Fig. 1.1 which shows a filter H(e/*) with
input z(n) and output y(n). The input z(n) is assumed
to be a widesense stationary process. With the input
power spectral density S;,(e’“) fixed, the compaction
filter problem is to find H(e’*) such that the variance
of the output, given by

4 . . dw
oy = | Swale)HEIZ (1)

is maximized under the constraint that |H(e/)|? is
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a Nyquist(M) filter. The design of such compaction fil-
ters is important in its own merit because of the usual
question of finding the best wavelets for a given appli-
cation. For a two channel orthonormal filter bank, the
two problems are identical : optimizing one of the sub-
band filters for mazimum energy compaction is equiv-
alent to designing a two channel optimal orthonormal
subband coder. To see this, recall that the coding gain
[4] of an orthonormal filter bank under optimum bit al-
location and with the high bit ratze quantizer assump-

tions is given b 2) = —=%—— where o2 is th

g Y gSBC( ) m z 15 the
input signal variance and o2 is the variance of the
kth subband signal. Using 207 = o2 + 02 , the above
expression can be rewritten as

1
\/Gcomp(2) (2 - Gcomp(z))

where Gcomp(2) is the so called compaction gain and
is equal to o2 /o2Z. The compaction gain therefore
uniquely determines the coding gain of a 2-channel
orthonormal subband coder. It is important to keep
in mind that the mazimum possible compaction gain
Geomp(2) is equal to two whereas the coding gain
Gspc(2) can be arbitrarily large.

2. THE PROBLEM SET UP

The aim of this paper is to statistically optimize a
two channel orthonormal filter bank when subband
quantizers are present at low cost. Two channel
orthonormal filter banks are of special interest because
they form a basic building block in the design of wavelet
transforms. Low cost filters are quite attractive in
image and audio coding applications. The requirement
for a very efficient two channel system motivates the
investigation of filter banks based on IIR filters rather
than FIR ones. Moreover, previous work on finite
order compaction filters and/or finite order two channel
optimum orthonormal filter banks has been mainly
dedicated to the FIR case (see for example [5], [6], and
[7] to name a few). To meet the above requirements, we
propose the optimization of a class of two channel 1IR
orthonormal filter banks based on the sum of two all

Gspc(2) = 2)
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pass filters [8]. In specific, consider the single coefficient
system:

2=

Hy(z) = L(:(:_2 + z“ll) Hi(z) = Ho(-2)
0 72 a2 0 0

where o is real and —1 < a@ < 1. The synthesis
filters are given by Fp(e’“) = H{(e’*) and Fy(e) =
H}(e’). The two channel system is shown in Fig.
2.1. Note that since the polyphase components of
the analysis filters are stable causal all pass filters,
their reciprocals will produce unstable synthesis filters.
To overcome this difficulty, Ramstad [9] proposed to
implement the inverse filters as anti-causal stable 1IR
filters. Although (1) is a seemingly restrictive case,
the proposed form of the filter Hy(z) is a special case
of the more general structure introduced recently by
Phoong and al. [10]. It has been shown that this type
of filter provides several excellent advantages [10]. For
example, the filter Hp(z) (and therefore H;(z)) can
have a very good frequency response. Furthermore, the
special form of the filter assure the existence of a zero
at m which can be important for wavelet applications.
For the purpose of this paper, our results indicate that
for the cases where we can obtain high compaction gain
with the special filters in (1), using higher order filters
does not increase the compaction gain.

3. THE ANALYTICAL RESULTS

Consider the set up shown in Fig. 2.1. where the input
signal z(n) is a zero mean wide-sense stationary (WSS)
random process with a power spectrum S,,(e’).
Each subband quantizer, labeled by Q, represents a
scalar uniform (PCM) quantizer and is modeled as
an additive zero mean white noise source g(n) with
variance

o) = 2 %g2, 1)

where 03 is the quantization noise variance, ¢ is a con-

stant that depends on the statistical distribution of the
subband signal z;(n) and the overflow probability, and
o2, is the variance of the ith subband signal. The sub-
band coding problem reduces to finding the optimum
coefficient o,y that maximizes the compaction gain
(alternatively the subband variance) at the output of
one of the subband. The specific form of the analysis
filters given in (1) guarantee automatically the Nyquist
property and transforms the constrained optimization
problem into an unconstrained one. A closed form ex-
pression for the compaction gain is given next.

Proposition 1. Consider the scheme of Fig. 2.1 under
all the previous filter and quantizer assumptions. The
compaction gain at the output of one of the subband

Copyright 1997 |IEEE

filters, say Ho(2), can be expressed as follows :

R,.(1)

R,.(0)

R“(l)

Rz (0) (2)

(a_a!{) = a” 7
Re®) 25 Fee 4 )

Geomp(2) =1+

~(a+a?)
+

The proof can be found in {11]. The infinite summation
in (2) is the result of the IIR nature of the filter bank.
The above equation was written specifically in the
above form in order to emphasize the following points:
First, when a is equal to zero, the compaction gain is
equal to 1+ R;z(1)/ Rz, (0), which is simply the 2 x 2
KLT compaction gain. This indeed makes sense since
the structure of Fig. 2.1 reduces to the 2 x 2 universal
KLT. Second, when the input signal is white noise,
i.e. Rg.(k) = 6(k), the compaction gain is equal to
one. Finally, observe that the above equation involves
only the odd samples of the autocorrelation sequence
R4 (k), due to the Nyquist constraint on |Hp(e/*)|?.
Therefore, if the input signal z(n) is such that its power
spectrum S;;(2) takes the form S(z?), the compaction
gain is equal to unity.

The goal now is to find the optimum coefficient aop
that maximizes (2). In general, it is difficult to
obtain analytical solutions due to the complexity of
the expression in (2). We will therefore present
analytical solutions for the optimum coefficient a,pt,
the compaction gain Gcomp(2) and the coding gain
GsBc(2) only for specific examples of the input z(n)
such as the MA(1) and AR(1) processes. For a general
random process z(n), the optimum coefficient aop: is
obtained numerically through a MATLAB program.
Example 3.1. Case of a MA(1)} process. Assume that
the input z(n) is a zero mean MA(1) process with an
autocorrelation sequence in the form

1 0 k=0.
Ry (k) = T T o k=1,-1.
0 otherwise.

where @ is between —1 and 1. It can be shown [11]
that, for this case,

Qopt = -0.5
Gcomp(z) =1+ 5sz(1)/4Rz: (O) (3)
Gsec(2) = 1/v/1~ 25R2,(1)/16R2,(0)

It is interesting to note that the optimum coefficient
aopt i8 independent of the signal statistics.

Example 3.2. Case of an AR(1) process. Assume
now that the input z(n) is a zero mean AR(1) process
with an autocorrelation sequence in the form R, (k) =
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pl*l where p is between —1 and 1. It can be shown [11]
that, for this case,

Qopt = (1 Y, (1 +P2))/P2
Gcomp(2) =1+p+p(l- pQ)Qgpt 4)
Gsno(2) = 1/3/1- p(1 + aZy(1 - p?))?

We note that the optimum coefficient in this case is
independent of the sign of p, is always negative and
between 1 — v/2 and —0.5 (the case where p = 0).
Furthermore, one can show that there is a negligible
loss of compaction gain even when ¢ is implemented
using very small number of binary shift and add
operations [11]. As p approaches unity, the scheme is
asymptotically equivalent to the 2 x 2 universal KLT.

4. EXAMPLES FOR MORE GENERAL INPUTS

We give several examples where the optimum coeffi-
cient a,p; is computed numerically through a MAT-
LAB program. The program uses the compaction gain
expression derived previously with input R,;(k) and
output a,pe. Although written in MATLAB, the pro-
gram converges in fractions of a second. This is an or-
der of magnitude faster than linear programming tech-
niques used to design high order FIR compaction filters
to achieve similar compaction gain. We vary the input
z(n) such that the power spectral density shape spans
a variety of choices from “low pass” to multiband with
energy concentrated in a specific region to multiband
with more even energy distribution. The magnitude
squared response of the optimum IIR compaction fil-
ter together with the ideal optimum compaction fil-
ter magnitude squared response and the input power
spectral density are shown in Fig. 4.1 to Fig 4.4. We
adopt the following convention for all the plots : the
solid curve denotes the input power spectral density,
the dash-dot curve denotes the magnitude squared re-
sponse of the optimum IIR compaction filter and the
dashed curve represents the magnitude response of
the ideal optimum compaction filter. This last curve is
obtained by optimizing an FIR filter with order equal
to 65 using a linear programming approach.

5. CONCLUDING REMARKS

We have addressed in this paper the problem of
optimizing a two channel orthonormal filter bank
with a cost constraint in mind. To achieve this,
we optimized a well known class of IIR two channel
orthonormal filter banks parameterized by a single
coeflicient. The resulting optimum filter bank provides
some good advantages that are not available in the
FIR case. First, the Nyquist property is satisfied
automatically because of the special form of the filters.
Second, in FIR compaction filter design, one would
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traditionally find |H (€/“)|? and then perform a spectral
factorization to obtain H(e’”). The positivity of
the solution is not usually guaranteed and spectral
factorization can be problematic in case of unit-circle
zeros. In our scheme, these concerns do not erist
since Ho(z) is directly found. Third, the form of the
filters assure the existence of a zero at = which can be
important for some wavelet applications. Fourth, the
filters have only one coeflicient which can be quantized
without a major sacrifice in compaction gain as we
demonstrate in [11]. Finally, the compaction gain
obtained is high and very close to two (ideal case) for
low pass spectrums, high pass spectrums and certain
cases of multiband spectrum. The only weakness of the
filter bank under consideration is its poor performance
for the case of general multiband spectrums. This is
mainly due to the monotone property of the phase of
an all pass function. For such cases, aq,: can be set to
zero to obtain the 2 X 2 universal KLT.
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Fig. 1.1. Schematic of the energy compaction problem.

2427



-1

Quantizer

-1

1

——42 Tf;?(n)
i

—>*2

V2

Fig. 2.1. The class of two channel orthonormal filter bank under consideration.
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Fig. 4.1. Case of a low pass AR(5)
process : IIR compaction gain = 1.95,
theoretical compaction gain = 1.951
and IIR FB coding gain = 5.00 db.
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Fig. 4.3. Case of a multiband AR(10)
process : IIR compaction gain = 1.52,
theoretical compaction gain = 1.61
and IIR FB coding gain = 0.68 db.
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Fig. 4.2. Case of a multiband AR(12)
process : IIR compaction gain = 1.951,
theoretical compaction gain = 1.97 and
IIR FB coding gain = 5.14 db.
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Fig. 4.4. Case of a multiband AR(5)
process : [IR compaction gain = 1.387,
theoretical compaction gain = 1.6 and
IIR FB coding gain = 0.35 db.

2428



