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Abstract—We show that oversampled filter banks (FBs) of-
fer more design freedom and less noise sensitivity than crit-
ically sampled FBs. We provide a parameterization of all
synthesis FBs satisfying perfect reconstruction for a given
oversampled analysis Fﬁ, and we derive bounds and expres-
sions for the variance of the reconstruction error due to noisy
subband signals. Finally, we introduce noise shaping in over-
sampled FBs and calculate the optimal noise shaping system.

1 INTRODUCTION AND OUTLINE

Recent interest in oversampled filter banks (FBs) [1]-[5] is
due to their increased design freedom, reduced noise sensi-
tivity, and noise reducing properties. This paper presents an
analysis of these advantages of oversampled FBs.

Section 2 investigates the design freedom in oversampled
FBs. We show that, for a given analysis FB, the synthesis
FB providing perfect reconstruction (PR) is not unique, and
we present a parameterization of all PR synthesis FBs [1, 2].

Section 3 presents a noise analysis for oversampled FBs.
We derive bounds on the variance of the reconstruction error
caused by noisy subband signals [1, 2], and we discuss the
dependence of the error on the oversampling factor. A sig-
nal space interpretation of noise reduction is given, and the
minimum norm synthesis FB is shown to minimize the error.

Finally, Section 4 proposes and analyzes the use of noise
shaping in oversampled FBs. The optimal noise shaping sys-
tem is derived, and a significant reduction of error vanance
is observed.

2 DESIGN FREEDOM

We consider a uniform FB [6, 7] with N channels (sub-
bands), subsampling factor M in each channel, analysis fil-
ters hx[n] & Hi(z), and synthesis filters fx[n] & Fi(z)
(k =0,1,..,N—1). The FB is said to be critically sam-
pled or mazimally decimated if N = M and oversampled if
N > M. The polyphase decompositions [6, 7] of the analy-

sis and synthesis filters read Hi(z) = EnM_ol 2™ Ex,n(2™)

and Fi(z) = Z:'!_- ~" Rin(2™), respectively, with the
polyphase components
Exn(z) = 3. hmM—n]z"™™, n=0,1,.,M-1
m=-—00
Rin(z) = Z fifmM +n]z"™, n=0,1,..,M-1.
m= oo

The N x M analysis polyphase matrix E(z) and the M x N
synthesis polyphase matrix R(z) are defined as [E(2)]x,n =
Eix n(z) and [R(2)]n,x = Rk n(z), respectively.
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A FB (critically sampled or oversampled) satisfies the per-
fect reconstruction (PR) property Z[n] = z[r] if and only if
[6,7,1, 2, 3]

R(2) E(2) = I, (1)

where I is the M x M identity matrix. In the critically sam-
pled case (N M), E(z) and R(z) are square matrices and
thus, assuming invertibility of E(z), (1) uniquely determines
the synthesis polyphase matrix as R(z) = E7'(z). In the
oversampled case (N > M), the matrices E(z) and R(z) are
rectangular and thus the solution R(z) of (1) is not unique.
This freedom in designing the synthesis FB for given analysis
FB is a desirable consequence of oversampling. Any solution
of (1) is a left-inverse of E(z) that can be written as [8]

R() = R(z) + UG) [In ~EG) RG], (2)

Here, R(2) is the para-pseudo-inverse of E(z), which is a
particular solution of (1) defined as’

R(z) = [E(z)E(z)] '

and U(z) is an arbitrary M x N matrix satisfying
I[U(e’*™)]n,k| < co. The para-pseudo-inverse R(z) corre-
sponds to minimum norm synthesis filters, i.e., Z L fxI12
is minimal among all synthesis FBs providing PR [5]

Eq. (2) provides a parameterization of the class of all PR
synthesis polyphase matrices R(z) in terms of the M N en-

tries [U(2)]n,x that can be chosen arbitrarily. This parame-
terization can also be formulated in the time domain as

Z Z (fishim ) wtm[n].

=0 m=—oo

E(z) ,

feln] = fuln] + ua[n] ~

Here, the fi[n] denote the minimum norm synthesis filters

(corresponding to R(z)), uk[n] is the filter with polyphase

components [U(z)]n x, i-e., Ux(z) = Z:’f:_ol 27 [U(zM)]nx,

and finally ux m[n] = ux[n—mM) and hi m[n] = R [mM —n].

Equivalently, (2) can also be formulated in the frequency
omain as

M-=-1 N-1
B(2) = Bu(e) + Uh(2) = 22 S BV S Hi(=WR) Ui (),

where Wy = eI ¥,

'Here, B(z) = E¥(1/2*) (with superscript ¥ denoting conju-
gate transposition) stands for the paraconjugate of E(z) [6].
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3 NOISE ANALYSIS

In this section, we shall investigate the sensitivity of over-
sampled FBs to (quantization) noise nx[m] added to the sub-

band signals vk[m] = (1:, hk,m> (k=0,1,...,N—1). Let us
collect the noise signals nx[m] in the N-dimensional vector
noise process n[m] that is assumed to be wide-sense station-
ary (WSS) and zero-mean. The N x N power spectral ma-
trix of n[m] is defined as Sp(2) = Y ;o __ Ca[l]z~" with the
autocorrelation matrix Cn[l] = £{n[m]n¥[m—1]}, where £
denotes the expectation operator {6].

Variance of reconstruction error. It is convenient
to redraw the FB in the “polyphase domain” as shown
in Fig. 1 [6]. Here, x(z) = (Xo(2) X1(2) ... Xm-1(2))T
and %(2) = (Xo(z) Xi(2) ... Xm—1(2))T with X,(2) =
Yo o ZmM +n]z™ and Xa(z) = Yoo #[mM +
n]z~™, and the noise n[m] is represented by its z-transform
n(z)=3 - ___ n[m]z~™. Assuming a PR FB, we have (see
Fig. 1) %(2) = x(z) + R(z) n(z), so that the reconstruction
error e[n] = £#[n] — z[n] is represented by

e(z) = %x(z) —x(z) = R(z)n(z). 3)

The reconstruction error e[n] is again WSS and zero-mean,
with M x M power spectral matrix [6]

Se(z) = R(2) Sn(2) R(2) (4)

and variance [9, 6]

ol = %/0 Tr {S(e°™)} db, (5)

where Tr denotes the trace operator.

Henceforth we make the idealized assumption that the
noise signals ni[m] are uncorrelated and white with iden-
tical variances o2 = £{|nk[m]|*}. It follows that C,[l] =
02 In 6[l] and S, (z) = o2 Ix [6]. With (4) and (5), the error
variance becomes

2
T =

%42 Tr {R(e™?™)R¥ (™)} 8. (6)
0

Frame-theoretic analysis of noise sensitivity. We
now assume that the FB corresponds to a frame expan-
sion [1, 2] in the sense that (i) the synthesis functions
fx.m[n] = fxln — mM] constitute a frame for the space of
square-summable signals, with frame bounds A > 0 and
B < oo [10], and (ii) the analysis functions hgm[n] =
hy[mM — n] are chosen as the dual frame [10]. This guaran-
tees PR? and potentially good numerical properties (char-
acterized by the frame bound ratio B/A). Furthermore,
it can be shown [1, 2] that the total energy of the sub-
band signals vk[m] = (z,hxm) is bounded as g|lz||* <

vy le[m]|? < Lllz)f®. For A = B (i.e. a tight

k=0
n(z)

X@) ) E(z)"_:)g::)k(z):} @)

Figure 1. Adding noise to the subband signals.

2Choosing the analysis and synthesis functions to be dual
frames corresponds to choosing R(z) = R(z) in (2) [1, 2].
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frame) we have Z::ol oo lUx[m]?> = L||z|?, that is,

energy conservation up to a constant factor, which means
that the FB is paraunitary [1, 2]

The (tightest possible) frame bounds A and B of a FB
providing a frame expansion are given by

A= inf An(8),

n=0,..,,M-1, 0€[0,1)

B = sup An(8),

n=0,..,,M—1, 0€{0,1)

where An(f) denotes the eigenvalues of the matg)%
R(ej21r9) RH(eﬂ‘ne) [1’ 2]‘

With Tr {R(e”") R¥(¢*™)} = 311! An(6) and (7), it
follows that MA < Tr{R(e’*"*)R¥(¢/*"°)} < MB. In-
serting this in (6), we obtain

o?
A <=3 < B, (8
On
i.e., the reconstruction error variance o2 is bounded in terms
of the frame bounds A, B. Let us assume normalized anal-
ysis filters, i.e., ||hk|]| = 1 for k =0,1,...,N — 1. It can then
be shown [1, 2] that A < % < B, where K = % is the over-
sampling factor. Hence, for A = B or equivalently B/A ~ 1,
(8) implies that small perturbations in the subbands yield a
small reconstruction error. The design of FBs with B/A =~ 1
(and additional desirable properties such as good frequency
selectivity) is easier for larger oversampling factor.

For a paraunitary FB with ||hx|| =1 we have A = B = &,
and hence (8) becomes
02 1 R N
E-—-I—(- with K—M. (9)

Thus, in the paraunitary case the reconstruction error vari-
ance 1s inversely proportional to the oversampling factor X,
which means that more oversampling entails more noise re-
duction. Such a “1/K behavior” has previously been ob-
served for oversampled A /D conversion [11], for tight frames
in finite dimensional spaces [10, 12], and for reconstruction
from a finite set of Weyl-Heisenberg (Gabor) or wavelet co-
efficients [10, 13]. Recently, under additional conditions, a
1/K? behavior has been demonstrated for Weyl-Heisenberg
frames [13, 14]. In Section 4, we shall propose noise shaping
techniques which can do even better than 1/KZ.

Noise reduction versus design freedom. Let us now
consider an oversampled FB with%{(z) chosen according to
(2), i.e., R(z) = R(z)+U(2) [Iv — E(2) R(2)], such that PR
is guaranteed. Inserting (2) in (3), we obtain the following
decomposition of the reconstruction error,

o(z) = er(2) +eu(2),
where

er(z) = R(z)n(z), ei(z) =U(z)Pi(s)n(z), (10)

with P 1 (2) = In—E(2) R(2). This can be interpreted as fol-
lows. Let R C [I*(Z)]" denote the range of the analysis FB
operator that assigns to each input signal z[n] the vector sig-
nal v[m] comprising the subband signals vx{m] = <:c, hk,m>.
That is, R is the linear space of all subband signal vec-
tors v[m] obtained for square-summable input signals z{n].

Furthermore, let Rt C [1*(Z)]" be the orthogonal com-
plement space [8] of R. Then Pr(z) = E(z)R(z) =
E(z) [E(2)E(2)] " E(z) and Py(2) = Iy — Pr(2) are the
polyphase domain representations of the orthogonal projec-
tion operators on R and on R*, respectively.
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The error component er(z) in (10) can equivalently be
written as er(z) = R(z)Pxr(z)n(z), which shows that
er(z) is reconstructed from the subband noise component
Pr(z)n(z) in R. Similarly, ei(z) = U(z) PL(2)n(z) is re-
constructed from the subband noise component P 1(2)n(z)
in R*. Since the subband noise signals nx[m] were assumed
uncorrelated and white, and since the spaces R and R+ are
orthogonal, er(z) and e (z) are uncorrelated. Hence, their

variances, denoted respectively 0% and 02, can simply be
added to yield the overall reconstruction error variance [15],

crz = 0'?2 + o'i.

The variance component 6% is independent of the param-
eter matrix U(z), and thus of the particular R(z) chosen.
The variance component o2, on the other hand, depends
on U(z); it is an additional variance that will be zero if
and only if R(z) = R(z). Indeed, it follows from (2) that
R(z) = R(z2) if and only if U(z)PL(z) = 0, in which case
ei(z) = U(z) PL(z)n(z) = o and thus also o5 = 0. Hence
R(z), the para-pseudo-inverse of E(z) (corresponding to the
minimum norm synthesis FB), yields the minimum recon-

- - 2 —_ 2 .
struction error variance o7 i, = 0% among all PR synthesis

polyphase matrices R(z). Using R(z), all noise components
ortho%)nal on the range space R are suppressed, while any
other PR synthesis FB (which may have desirable properties

such as improved frequency selectivity) leads to an additional

error variance o since also noise components orthogonal on
R are passed to the FB output. In this sense, there exists a
tradeoff between design freedom and noise reduction.
Loosely speaking, the range space R—and thus also the
fixed noise component 0% —becomes “smaller” for increasing
oversampling factor K = N/M. This explains why more
oversampling tends to result in better noise reduction.

4 OPTIMAL NOISE SHAPING

The noise reduction in oversampled FBs can be further in-
creased by means of noise shaping techniques that generalize
noise shaping coders for oversampled A/D converters [16).
We here propose a noise shaping system cradled between the

analysis FB (E(z)) and the synthesis FB (R(z); note that
we use the minimum norm synthesis FB), and represented
by the N x N transfer matrix G(z) (see Fig. 2). Modeling
the quantizer in Fig. 2 by additive noise n(2) (cf. Fig. 1), it
is readily shown that the reconstruction error is given by
e(z) = R(2) G(z)n(z). (11)

Again assuming uncorrelated and white noise signals, i.e.,
Sn(2) = 62 Iy, the reconstruction error variance is
2 rl ) ) . A ;
ot = 22 | Tr {R(e”7) G(e"*) GH(e*) R¥ (™)} db.
0
(12)

RO @)

x(2) E(z) + 0]

IN-G(2)

Figure 2. Qversampled FB with noise shaping.
(The boz labeled Q denotes the quantizer.)
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Without further constraints, the noise could be completely
removed using the orthogonal projection system G(z) =

Pi(z) = In — E(z)R(2). Indeed, inserting in (11) it fol-
lows with R(z) E(z) = In that e(z) = o. This noise shaper
projects the noise onto R*, and the projected noise is then
suppressed by the minimum norm synthesis FB R(z).
Optimal noise shaper. Unfortunately, the above ideal
noise shaper is inadmissible as it leads to a noncausal feed-

back loop system In — G(z). Therefore, we hereafter con-
strain the noise shaping system to be a causal FIR system,

L
G(z) = In +ZG; 2=,

=1
resulting in a strictly causal feedback loop system Ixy — G(z).
We now derive the optimal noise shaping system, i.e., the
matrices G; minimizing the reconstruction error variance o2
in (12). We assume a paraunitary FB with normalized, real-
valued analysis filters (hx[n] € R and |[hx|| = 1) of finite
length Ly = (P + 1)M (with some P € IN). We then have
E(z) = Ef:o E, 27" where [E;]i; = hi[rM — j] € R. After
some manipulations the error variance is obtained as [17]

2 L
or = ﬁa[%[MK+'ﬁ{Z(I‘,GT+I‘ITG,)}

=1

where T'y = z:;o E.E7_,. From this expression, it can be

seen that choosing the order of the noise shaping system as
2

L = P+1is sufficient. Setting (cf. [18], Section 5.3) ai‘é'? =0

for 1 =1, ..., L, we obtain the linear system of equations

L
Y TiaGi=-T,
=1

which has block Toeplitz form and can thus be solved effi-
ciently using the multichannel Levinson recursion [19]. In-
deed, the noise shaping considered here can be shown [17] to
be closely related to multichannel linear prediction [19].

A simple example. Let us consider a simple parauni-
tary two-channel FB (i.e., N = 2) with M = 1 and, hence,

(13)

oversampling factor K = 2. The analysis filters are the Haar
filters Ho(z) = 7‘5(1 +2z7!) and Hi(z) = -\}5(1 —z™1), and
the minimum norm synthesis filters are ﬁ‘o(z) = %I:Io(z)

and Fy(z) = %fll(z) Without noise shaping, we obtain
02 = 02 /2, which is consistent with the 1/K result (9).
With (13), the optimal noise shaping system of order L = 1
is obtained as G(z) = I + G1 z~! with
17 -1 -1
=371 1)
and the minimal error variance is obtained as 02 = ¢2/4.

Thus, the variance has been reduced by a factor of 2. It is
instructive to compare this result with the optimum noise

shaping system G? (2) of order L = 1 obtained under the
constraint that G(z) is a diagonal matrix (i.e., the redun-
dancy between the two channels is not exploited); here,

p_l[-10
aP=3[ % 1]
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and 02 = 302. Thus, as expected, failing to exploit the
8 g

interchannel redundancy leads to a larger error variance.

The transfer functions £5(z), F1(2) of the synthesis FB and
the transfer functions Goo(z}, G11(2) of the noise shaping
filters in the diagonal of G(z) (the same as in the diagonal
of GP(z)) are depicted in Fig. 3.

Frequency response Frequency response
5 5
o 0
& —
-5 8 5
1
2-10 -10
3-1 5 g -15
-20 -20
-25 -25
a 01 02 03 04 ] 01 02 03 04
(a) )
Frequency response Frequency response
5 5
0 0
g -5 / s . ‘\
% ~10; g -10
_ 2-
g 15 g 15,
-20 ~20
- -25
250 01 02 03 04 0 01 02 03 04
©) (d)

Figure 8. Synthesis filters and noise s!mping ﬁIteArs in an
oversampled two-channel FB: (a) Fo(2), (b) Fi(z),
() Goo(z), (d) G11(2).

It can be seen that the noise shaping system Goo(z) =1—

1 27! (operating in the lowpass channel) attenuates the noise

2
at low frequencies (note that Fp(z) attenuates high frequen-
cies), whereas the noise shaping system G11(z) =1+ 127"
(operating in the highpass channel) attenuates the noise at
high frequencies (note that F1(z) attenuates low frequencies).

Simulation results. For three paraunitary odd-stacked
cosine modulated FBs [17] with N =16, L, =81 (length of
prototype), and M =8, 4, and 2, respectively (i.e., oversam-
pling factors K = 2, 4, and 8, respectively), Fig. 4 shows

2
the normalized error variance 10 log(fi-) as a function of the

noise shaping system’s order L. Note that for increasing L
the error variance decreases up to a certain point, after which
it remains constant.

Normalized noise variance (dB)
8 &% 8 3 3 &

)
3

—

&

-
(%) ST
w

AN
System order L

Fig. 4. Normalized error variance 10 log(c2/02) as a function
of the noise shaping system’s order L.
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5 CONCLUSION

We have shown that oversampled FBs feature increased de-
sign freedom and improved noise immunity. The latter prop-
erty allows a coarser quantization of the subband signals. We
introduced oversampled noise shaping subband coders that
exploit intrachannel and interchannel redundancies to yield
a substantial noise reduction. A rate-distortion analysis [20]
of source coding using oversampled FBs is an interesting di-
rection of further research,; first results on this topic (without
noise shaping) have been reported in [21].
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