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ABSTRACT

An adaptive transversal equalizer based upon the
least-mean-square (LMS) algorithm, operating in an en-
vironment with a temporally correlated interference, can
exhibit better steady-state mean-square-error (MSE) per-
formance than the corresponding Wiener filter. This phe-
nomenon is a result of the non-linear nature of the LMS al-
gorithm and is obscured by traditional analysis approaches
that utilize the independence assumption. We use a transfer
function approach to quantify the MSE performance of the
LMS algorithm and demonstrate that the degree to which
LMS may outperform the corresponding Wiener filter is de-
pendent on system parameters such as signal-to-noise ratio
and the step-size parameter.

1. INTRODUCTION

Adaptive transversal equalizers are important components
of digital receivers and primarily are used to mitigate the ef-
fects of intersymbol interference caused by multipath prop-
agation and band limiting in the communication system [1].
The use of an adaptive equalizer as a method of interference
suppression also is important, particularly in mobile digital
radio systems.

The computationally efficient least-mean-square (LMS)
adaptive algorithm [2] often is used in the implementation
of the equalizer. Due to the non-linearity of the LMS algo-
rithm, the optimum performance of the equalizer often is
accessed using the Wiener realization of the adaptive filter
{3]. The efficacy of this approach is based upon the argu-
ment that the LMS algorithm will result in greater mean-
square-error (MSE) than the corresponding Wiener filter
due to gradient noise on the adaptive filter weights. This
argument is supported by traditional analysis approaches
that invoke the independence assumption in which it is as-
sumed that the current filter weight vector is statistically
independent of the current tap data vector [4]. Then the
resulting analytical expression of the MSE of the LMS al-
gorithm is greater than the MSE produced by the Wiener
filter. The expressions derived using the independence as-
sumption generally have agreed closely with experimental
results for a variety of adaptive filter applications such as
the adaptive line enhancer and the adaptive noise canceler
[5], when the LMS step-size parameter has a ‘small value’.

However, recently it has been reported that an LMS-
implemented adaptive equalizer operating with a tempo-
rally correlated interferer, can produce better probability-
of-error performance than the corresponding Wiener filter
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[6]. Subsequent simulations have revealed the unexpected
result that with the proper choice of the step-size param-
eter, the non-linear nature of the LMS algorithm can be
exploited to generate MSE which is less than the Wiener
MSE. As a result, an analysis of this problem cannot in-
voke the independence assumption.

To analyze this behavior, we utilize the transfer function
approach first presented by Glover [7] for adaptive noise
canceling of sinusoidal interferences and later generalized
by Clarkson and White 8] to include deterministic interfer-
ences of arbitrary periodic nature and interferences which
are stochastic. We present an analysis approach that gen-
erates an approximate expression of the steady-state MSE
for the LMS algorithm. We specifically analyze equalizer
performance for interference that is sinusoidal.

2. EQUALIZER PROBLEM

Fig. 1 represents the baseband adaptive equalizer structure
to be analyzed. We present only the analysis of a symmet-
ric, two-sided equalizer, even though the non-linear effects
occur in one-sided equalizers as well. Vector quantities, such
as the reference data vector u(k), are represented as

ul(k) = (u(k+N) ... w(k) ... w(k=N)T, (1)
where N is the number of leading and lagging taps, k is the
time index, and T denotes transpose. The total number of
taps is given by L = 2N + 1. u(k) is decomposed into a
sum of three statistically independent components as

u(k) = s(k) + x(k) + n(k), (2)

where s(k) is the communication signal, x(k) is the inter-
ference vector, and n(k) is the noise vector. The communi-
cation signal and the noise are modeled as white processes
with zero mean. The output of the adaptive filter y(k) is
given by the inner product of the filter weights and the data

vector as
y(k) = w¥ (kyu(k), @)

where H denotes Hermitian transpose. y(k) is sent through
a decision device to estimate s(k), the symbol currently at
the center tap.

During the convergence phase of the adaptive algorithm,
the equalizer is in the training mode, in which the desired or
primary input d(k) is the error-free training sequence s(k).
During the communication phase, the equalizer is in the
decision-directed mode in which the output of the decision
device s(k) is used as d(k).
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The weights of the equalizer are adapted by the complex
LMS algorithm which uses the error sequence e(k) to adjust
the weights as [2]

w(k +1) = w(k) + pu(k)e" (k), (4)

where p is the step-size parameter, e(k) = d(k) — y(k), and
* denotes complex conjugation.

Defining the L x L correlation matrix and the L x 1 cross-
correlation vector as

R =E [u(k)u?(k)] and p=E[u(k)d* k)], (5)

the Wiener filter weights and associated MSE J are given
by [4]

ww =R7'p and Ju =02 — pwy, (6)
where ¢ is the communication signal power.

Under Gaussian assumptions, the Wiener filter provides
the optimum MSE estimate Cy(u(k)) of the parameter
s(k). However, this fact does not preclude the LMS algo-
rithm from generating an estimate with less MSE. Due to
the recursive and non-linear nature of the LMS algorithm,
the estimate of s(k) is a function of much more information
than that utilized by the Wiener filter. The LMS algo-
rithm not only utilizes more samples of the reference data,
but, more importantly, it explicitly uses previously-detected
symbols of the communication signal. The LMS estimator
can be written abstractly as

y(k) = Cims (u(k) u(k = 1) ... ;d(k—1)d(k —2) )(
7)

In fact, this information is used in an equalizer structure

consisting of a two-sided feed-forward transversal filter with

an additional decision-feedback filter [3].

3. TRANSFER FUNCTION
APPROXIMATION

We begin by decomposing the LMS filter weights into a
sum of a steady-state, time-invariant mean component and
a time-varying misadjustment component as

w(k) = W, + Wnis (k). (8)

We begin steady-state filtering at time index k = 0. We also
assume that wmni;(0) = 0. This is equivalent to initializing
the LMS algorithm with the mean filter. Using (4), we get
the recursive equation for the misadjustment filter

Wmis (k) + pu(k)e” (k) (9)
k—1
B € (G)uG):

Then the output process y(k) can be written as

Wmis(k + 1)

k~—1
y(k) = wilu(k) + p Ze(j)u”(j)u(k), (10)
and the error process e(k) as
e(k) + 5 Y e(iu (ulk) = d(k) —wuk). (1)
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Equation (11) is a k*®-order recursive difference equa-
tion. Because the coefficients are stochastic, this equation
is difficult to solve analytically. However, for wide sense
stationary processes whose second-order moments can be
estimated with time averages, Clarkson and White [8] pro-
pose using the approximation

w?(Hu(k) = Lru(k - j), (12)

where r,(m) is the autocorrelation function of the reference
process u(k). Equation (11) then is approximated by a
standard difference equation with constant coeflicients as

e(k) + 8L Y ru(k — j)e(5) = d(k), (13)
where N
d(k) = d(k) — wiu(k). (14)

We can then interpret the LMS error e(k) as the output
of a linear system with transfer function Hg(z) given by [8]

Hi(z) = ﬁi{(_) with R(z)=mz=:lru(m)z_m,

(15)
driven by c/i\(k) Because d(k) also is a wide sense stationary
process, the discrete power spectrum of the error process
e(k) is

Su(z) = He(2)Hp(1/27)55(2). (16)

The discrete power spectrum of the driving process is de-
rived using (2) and (14) and is given by

Sp(z) = (1 =Wl ()1 - We(1/2)Ss(2) +  (17)
W (2")Ws(1/2)(Sx(2) + Sa(2)),

where S,(z), Sz(z), and Sr(z) are the discrete power spec-
tra of the communication signal, the interference process,
and the noise process respectively, and W,(z) is the z-
transform of the steady-state filter weights w;. We assume
that, even if the equalizer is in the decision-directed mode,
there are no decision errors. Using the assumption that
both the communication signal and the noise process are
white, we can replace S, (2 z) and Sn (z) with the respectlve
signal and noise powers o2 and o2 in (17). The appro:uma—
tion of the steady-state MSE of the LMS algorithm is the
power of the process e(k) given by

_L .
Jims = py fiz‘ﬂ Se(z)z” d=. (18)

4. CW INTERFERENCE

We apply this approach to derive the estimate of the LMS
MSE for a complex sinusoidal interference scenario. To be-
gin, we must know the steady-state mean weights in (8).
Because w, cannot be determined with this transfer func-
tion approach, it is necessary to use the Wiener weights wy,.
Although applying W.(z) to (18) would result in a more
accurate estimate of MSE, the use of the Wiener transfer
function has provided adequate results.
The interference vector is given by

xT(k) = g, @akd) (gval |  mwaM)T (1)
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where wp is the offset frequency of the interference, and ¢
is a random phase uniformly distributed between —x and
7. The autocorrelation function of u(k) is given by

Tu(m) = 0’36m + UieiwAm + aiém: (20)
where 8., is the Kronecker delta. Applying (20) to (15),

and using the change of variable z = exp(iw) to (16) - (18),
we get

2(1 — cos(w — wa))
1+ (plo2 —1)2 +2(pLo2 — 1) cos(w —wa)
(21)
It is straightforward to find the frequency response
Wy (e') of the Wiener filter for this case. Then, (18) can
be solved analytically to get [9]

2
1~ A2
where A =1—pulo%, B=C+ D, C = oo/ (af +a?,),

D = (afai/ (03 +02 4+ La_,zt))2 / (af + o?l), and -1 <
A < 1. This condition on the variable A is required to make
the filter Hg(z) stable. However, it may not be adequate to
ensure stability of the LMS algorithm. Using this equation,
the MSE-optimum step size parameter can be found as

Mopt = fi_g (1—%(3—\/3—2—7)). (23)

It also is informative to examine the theoretical power
spectral density (PSD) of the LMS output process y(k)
which is given by

Sy(e) = |1+ (Wa(e™™) = 1) He(e")[’o? + (24)
Wa(e™) Hu(e™) o

|HE(e™)* =

Jims = (B-ca-DAaY), (22)

Numerical Examples: To demonstrate the validity of
these results, theoretical LMS performance is compared to
estimated performance derived experimentally via Monte
Carlo simulations. The communication signal s(k) is sim-
nlated as a quadrature phase shift keyed (QPSK) signal in
which the mutually independent in-phase and quadrature
corznponents take values +1 and —1 with equal probability
(02 =12).

Fig. 2 is a plot of MSE as a function of the step-size pa-
rameter p for equalizer tap length L = 51, signal-to-noise
ratio 25dB (SNR = 02/02), and signal-to-interference ratio
-20dB (SIR = 0?/02). The estimated LMS MSE obtained
during the training phase and the MSE obtained during
the decision-directed mode are plotted. Clearly, the MSE
performance improvement of the LMS algorithm over the
Wiener filter can be significant with the proper choice of
p. Also, close agreement with theory is observed. The opti-
mum choice of 4 determined from (23) is pope = 3.78x107°,
which agrees with the figure. Fig. 2 also is interesting be-
cause it contradicts conventional wisdom in adaptive filter
theory in which a smaller step-size parameter p is associated
with less MSE. This is not the case for g < popi. However,
as expected, the LMS MSE performance approaches that of
the Wiener filter as g — 0.

MSE as a function of SNR is shown in Fig. 3. The number
of taps is L = 51 and SIR = -20dB. The step-size param-
eter is popt. Also, the MSE of a Wiener filter with a deci-
sion feedback filter is included [3]. This figure demonstrates
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that for low to moderate SNR, the LMS-implemented equal-
izer achieves the MSE-performance of a Wiener filter with
decision-feedback without explicitly incorporating a feed-
back structure. '

Fig. 4 is a sequence of estimated and theoretical PSD’s of
the equalizer output process y(k) operating in the decision-
directed mode, with interferer offset frequency wa = 1.5
and parameters as in Fig. 2 for three values of u. Fig. 4a)
represents ‘small’ g in which LMS performance is similar
to that of the Wiener filter. The notching effect nulls the
interference at the expense of inducing intersymbol interfer-
ence in the communication signal s(k). However, Fig. 4b)
is the result of using popi. The PSD in this case is seen to
be almost flat, suggesting that interference nulling is occur-
ring without the expense of significant distortion of s(k).
Fig. 4c) is for ‘large’ p where spectral distortion is seen to
increase again.

5. CONCLUSION

We have demonstrated the unexpected fact that an adap-
tive equalizer implemented with the LMS algorithm can
have better interference nulling capabilities and exhibit bet-
ter steady-state MSE performance than the corresponding
Wiener filter. This non-Wiener effect is important because
it conflicts with conventional wisdom in which it is assumed
that LMS MSE exceeds that of the ‘optimal’ Wiener filter.
The LMS algorithm achieves this improvement in perfor-
mance by effectively incorporating information not used by
the Wiener filter.
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