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ABSTRACT

A nonlinear predictive approach has been employed in
MPEG (Moving Picture Experts Group) video transmis-
sion in order to improve the rate control performance of
the video encoder. A nonlinear prediction and quantisation
technique has been applied to the video rate control which
employs a transmission buffer for constant bit rate video
transmission. A radial basis function (RBF) network has
been adopted as a video rate estimator to predict the rate
value of a picture in advance of encoding. The quantiser
control surfaces based on nonlinear equations, which map
both estimated and current buffer occupancies to a suit-
able quantisation step size, have also been used to achieve
quicker responses to dramatic video rate variation. This
scheme aims to adequately accommodate non-stationary
video in the limited capacity of the buffer. Performance has
been evaluated in comparison to the MPEG2 Test Model 5
(TM5) in terms of the buffer occupancy and picture quality.

1. INTRODUCTION

The rate control algorithm of TMS5 is based on the previous
history of video rate, global and local picture complexity
measures. This technique is known to be inappropriate for
non-stationary videos with frequent scene changes or rapid
motion [1], since the statistical properties are changing ac-
cordingly. Therefore, for such video, a different approach is
required. Recently, we have developed a feed-forward video
rate control technique using scene change features [2, 3].
The main feature of the technique is that the predictive es-
timation of the video rate value is derived from a series of
scene change features. The employed prediction technique
is based on a one-step ahead linear prediction using previous
video rate data in a heuristic way. In this paper a nonlin-
ear estimation technique is applied in order to more effec-
tively control dramatic scene changes. The RBF-network
[4] was designed to estimate the video rate using the scene
change features of the input video so that the quantisation
step size can be adjusted in advance of encoding the pic-
ture. The scene change features are framewise variances
and picture type information. The nonlinear quantiser con-
trol surface changes the quantisation step size depending
on the estimated video rate and the current buffer occu-
pancy. Three performance evaluation measures were used;
number of coded bits per frame, buffer occupancy and peak
signal-to-noise ratio (PSNR).

2. A RBF-NETWORK RATE ESTIMATOR

Before describing the detail of the RBF-network estimator,
an example of performance of the linear predictive video
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rate control techniques described in [2] is shown in Figure
1.
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Figure 1. A performance example of linear predic-
tive rate control techniques: (a) buffer occupancy,
(b) Peak SNR.

TM5 represents the video rate comtrol technique em-
ployed in the MPEG2 TM5. The other three methods
(LIN, SIGM and LOGEXP) are based on the same linear
predictive method (2] but a different quantisation control
function is applied to each method. A linear function and
a sigmoidal function are used for the methods, LIN and
SIGM, respectively. For LOGEXP, a combination of log-
arithmic and exponential functions is employed, which is
collectively named “unimodal” in later sections of this pa-
per, instead of the linear or sigmoidal function. The results
shown in Figure 1 are obtained from the MPEG2 encoding
of “JFK” movie sequence at the 1024 kbits/s channel rate
and the 30 frames/s frame rate. TM5 shows the worst per-
formance often reaching the buffer full state, also showing
wider variations in the PSNR. On the other hand, the other
schemes exhibit far smaller variation in the occupancy and
the PSNR alike. Particularly, LOGEXP shows the most
stable occupancy profile with the very similar quality to
LIN and SIGM.

The RBF-network video rate estimator aims to further
improve the performance by applying its nonlinear predic-
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tive properties to non-stationary signals. The innovated
MPEG?2 encoder contains three additional rate control func-
tions as shown in Figure 2: the scene change calcula-
tor, the rate estimator and the nonlinear quantiser con-
trol. The scene change calculator outputs the two variances,
var_org(k) and var_dif(k), and the picture type informa-
tion, ptype(k), as inputs for the rate estimator. The pre-
dicted video rate, cbf(k), is added to the current occupancy,

O(k —1,n), to form the predicted occupancy, O(k, n), used
by the the nonlinear quantisation control, which finally out-
puts the quantisation scale value, Qs(k, n). var_org(k) and
var_dif(k) represent the variance within an input picture
and the variance between the input picture and the pre-
vious picture, respectively. ptype(k) has a single integer
for a particular picture type (I, P and B), thus it forms a
cyclic time series as k increases such as 8,4,2,2,4,2,2,... for
I,p,B,B,P,B,B....
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Figure 2. A RBF rate estimator-based MPEG2

video encoder.

A RBF network consists of centres with a radial basis
function and linear weights, Figure 3, defined in the follow-
ing equations:

N
Bf(xy =) wis(llx = xill)
i=1
X ~ x|
(llx — xil) = exp(— =11 ®
o

where chf(x) is the output of the RBF network, w; is the
linear weight, x is an input vector containing scene change
features, and X; represents the selected centre. The radial
function ¢() is a Gaussian function. The Euclidian distance
between the input and the centre (||x —x;|]) determines the
output value of the RBF layer. o2 represents the variance
of x. The RBF centres may be selected by the orthogo-
nal least square (OLS) algorithm [5]. The OLS algorithm
selects representative RBF centres when supervised learn-
ing is used. However, in the case of the running MPEG2
encoder, supervised learning cannot be used properly since
the nature of realistic video is non-stationary. A super-
vision of scene change features for a short period of time
does not provide an entire insight into the whole properties
of the non-stationary video. Thus the k-means clustering
algorithm is used, which adaptively updates the RBF cen-
tres depending on variations in scene change features. The
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centres are updated as follows [6]:
xj(k) =x;j(k = 1) + ge(cbf (k) —~ x;(k - 1)) (2)

where x; is the jth centre and the constant g. controls
the learning rate. The linear weights, w;, are optimised
recursively in a least square sense (RLS) [7].

3. QUANTISATION CONTROL SURFACES
BASED ON NONLINEAR EQUATIONS

The quantisation step size is the core parameter which con-
trols the occupancy. The goal of the buffer-based rate
control technique is to effectively map the occupancy to
the quantisation step size specified in the MPEG2 stan-
dard. Several different control functions have been pro-
posed. They can be classified into linear, piecewise linear
and nonlinear [8, 2]. This paper focuses on the nonlin-
ear control functions. The nonlinear quantiser control, as
shown in Figure 4, uses both the current (b) and the pre-
dicted buffer occupancies (a) to select a quantiser control
curve for the quantisation scale (c¢). It changes between
linear and nonlinear curves depending on the predicted oc-
cupancy. If a dramatic change in the occupancy is pre-
dicted, then it changes the shape of the curve towards a
more distorted one, otherwise, it selects a curve close to
the linear function. The final quantisation scale value is
determined by the current occupancy. In this paper two
nonlinear mapping surfaces are examined, sigmoidal and
unimodal as shown in FigureS5.
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Figure 4. Nonlinear quantisation step size mapping.

The sigmoidal surface (SIGM) is formed by changing the
steepness of a sigmoidal function. The unimodal surface
(UNIM) consists of a combination of an exponential part
and a logarithmic part. The quantisation scale for the
macro block n, Qs(k,n), is calculated as follows:

Qs(k,n) = f(O(k—1,n),0(k))
O(k) = O(k—1,n)+3bf(k)—MBF  (3)
where MBF is the target video rate given by the mean value

of bits per picture. f()is one of the nonlinear mapping sur-
faces, and a value of Qs(k) for the next macro block is

determined for given O(k — 1) and 6(k) The two sur-
faces, shown in Figure 5, are expressed in equations of

fs(O(k —1,n),0(k)) and fu(O(k — 1,n),O(k)), which rep-
resent surfaces of SIGM and UNIM, respectively:

fs(0) = a(50(k 1) TR
trunc(l + o — O(k - 1))

(1 —(-e) (1 i —(1-0(k - 1)))>(T3(k)+1)
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Figure 3. RBF predictor with 3 inputs and 9 taps.
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X trunc (9(—k-——1—)> (4)

fU(.) = O(k _ I)C/(Ta(k)+1) (5)

where trunc is a truncation function to output 0 or 1 de-
pending on its input value.

Figure 5. Sigmoidal surface: (a) Tnaz = 8, (b) Tinax
= 13. Unimodal surface: (¢) Tmaz = 3, (d) Trmaz =
13.
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The torsion factor, T, represents the shape distortion of
the control surfaces, ranging from 1 to Tinqr which repre-
sents its maximum value, varying with channel rates, as
shown below :

A

channel_rate

Tmaa: = (6)
where A is a constant. When the channel_rate is high, the
expanded channel capacity can handle the video rate fluctu-
ation, hence, a small T,,,; can be used. For a lower channel
rate, a higher value is assigned to provide the surface with
a larger torsion. The constants, o and C, are balancing
factors forming the surfaces in a balanced or an unbalanced
shape. Figure 5 shows two extreme cases of Tinas for spe-
cific values 3 and 13. The surfaces with a larger Trnq, value
exhibit more torsion.

4. SIMULATION RESULTS

Two video sequences, “Starwars” and “JFK”, were used
in simulations to give frequent scene changes and non-
stationary input video data to the encoder. The sequence
we used contains 300 frames captured from parts with
rapid motion and dramatic scene changes. “JFK” has more
dramatic scene changes: transitions between coloured and
monochrome scenes and rapid zooming. The video encoder
is set to operate at a channel rate at 1024 kbits/s and a
frame rate at 30 frames/s. It has a buffer with the size of
twice of MBF. For each value of ptype(), the integers 10,
8 and 6 are assigned to I, P and B pictures, respectively.
We first assessed the performance of nonlinear surfaces de-
pending on the values of Tinqz, as shown in Table. 1. NFVR
in the middle column stands for normalised fluctuation of
the video rate which represents the total amount of cbf(k)
fluctuation:

NFVR = —2 f:E(“ﬂ”—Q2 (1)

1+’ MBF
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cbf(k

where represents instantaneous fluctuation. Both

surfaces show better rate control performance with reduced
variance as Tynqr increases. While SIGM exhibits less fluc-
tuations in video rate, UNIM appears superior in terms of
mean PSNR with the standard deviation (std. dev.) close
to SIGM.

Starwars Occupancy(%) coded bits / frame (bits) PSNR (dB)
Tmax mean std.dev. | NFVR sud.dev. mean std.dev.

T™MS 41 10.78 0.285 13704 33.70 1.96
SIGM 51 0.51 0.030 1060 31.84 2.36
5 UNIM 26 4.89 0.122 4728 33.91 2.54
SIGM 51 0.39 0.027 958 31.65 2.35
? UNIM 18 4.58 0.117 4516 33.89 2.55
SIGM 51 0.33 0.023 802 31.57 2.35
? UNIM 13 4.16 0.111 4274 33.87 2.55
SIGM 51 0.26 0.022 782 31.39 2.34
1 UNIM 10 3.69 0.106 4043 33.84 2.55
SIGM 51 0.24 0.020 701 31.33 2.35
13 UNIM 7 3.43 0.099 3755 33.82 2.55

Table 1. Effect of changing the torsion factor.

Two rate control schemes were evaluated in comparison
to TM5; a linear rate estimator optimised with the recur-
sive least square (RLS) algorithm, which has no RBF layer
and the RBF-network estimator shown in Figure 3. Both
schemes employed UNIM surface for better video quality.
For the nonlinear quantisation mapping surfaces, Tynq, is
set to 7. Figure 6 shows profiles of the three schemes for
frames 180 to 250 where dramatic scere changes occur. Ta-
ble 2 summarises the performance for all 300 frames.
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Figure 6. Performance of rate control algo-

rithms (“JFK” sequence): (a) buffer occupancy, (b)
PSNR.
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Occupancy(%) coded bits / frame (bits) PSNR (dB)
JFK
mean(max.) | std.dev. NFVR std.dev. mean std.dev.
T™S 39 (172) 26.57 0.378 20517 36.08 334
RLS 17 (76) 1033 0.188 7687 36.49 383
RBF 11(61) 10.07 0.169 6661 36.48 383

Table 2. Mean and standard deviation of perfor-
mance measures.

TMS5 exhibits inferior control capability to the two other
schemes in terms of both occupancy. Although the std.dev.
in PSNR appeared smaller for TM5 than for RLS and RBF,
the average PSNR of TMS5 is slightly lower than the two
others. RBF appeared to be capable of keeping the oc-
cupancy lower with a smaller std.dev. than RLS, without
quality degradation. Note that the NFVR and the std. dev.
of coded bits/frame are considerably smaller than those of
RLS, and that the performance is better than Figure 1.

5. CONCLUSION

The MPEG2 video rate control technique, which is based
on a nonlinear predictor and quantisation control, has been
investigated for a constant bit rate transmission. The RBF
network rate estimator appeared to improve the rate con-
trol performance in terms of video rate and video quality,
when it is used in combination with the nonlinear quan-
tisation technique employing the unimodal function. This
signifies that the nonlinear predictive technique may sub-
stantially enhance the performance of the rate control mech-
anism when processing non-stationary video.
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