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ABSTRACT

This paper presents a new, fully automatic and robust
feature extraction algorithm based on the selection of
a given range of scales. It compares consecutive band-
pass images of a Gaussian multiscale decomposition to
extract the objects that appear between given scales.
The comparison is performed using original distributed
entropic measures. The application to building detec-
tion in aerial images shows that scale is a robust and
precise criterion for the detection of man-made objects.
They also show that distributed entropic tools are rel-
evant for the comparison of band-pass images.

From a more theoretical point of view, this method
stands between Scale-space and wavelet approaches. It
tries to infer the geometrical conception of scale found
in the Scale-space theory into the algebraic scale of the
wavelet theory.

Keywords: Multiscale analysis, wavelets, Scale-space,
feature extraction, entropy, aerial tmagery, HR satel-
lite 1magery

1. INTRODUCTION

Different notions of scale exist in the multiscale liter-
ature. Scale-space theories consider that representing
an image at a larger scale means smoothing or diffus-
ing it. In this paper, as in the wavelet theory, we con-
sider scale as an elementary dimension. An image of
a multiscale decomposition at scale t is made of ob-
jects and details whose dimension is close to t, in at
least one direction.” Every feature of an image should
then be present in a limited range of scales: at coarse
scales, the object is too small to be visible, while at fine
scales, the details of the object are visible, but not the
object as such. In this paper, we present an original,
fully automatic and robust feature extraction method,
called “entropic scalar detection”, based on this par-
allel between an object and its scale (see figure 1). It
uses original distributed entropic measures to compare
consecutive band-pass images of a Gaussian multiscale
decomposition, so as to extract the objects that appear
between the two scales.
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Figure 1: Entropic scalar detection

Section 2 describes the multiscale decomposition we
use, while section 3 presents the magnitude we shall
use to measure innovation between scales. Section 4
describes the algorithm and how it is made fully auto-
matic. Section 5 shows some experimental results and
compares them with a classical algorithm. Section 6
brings conclusions and perspectives about this peculiar
approach of multiscale analysis.

2. MULTISCALE DECOMPOSITION

Let the multiscale analysis un of rank N associate the
detail images X, neqo,..,N~1} and the low-pass image
Xn to an original image X:

uny X — llN(X) = {Xn,nG[O,N—l]»XN} (1)

This work aims at comparing scale bands X, in the
same image space, i.e. the original image space. Thus,
no sub-sampling will be processed. Moreover, we do
not wish to favor any spatial direction in the detail
images. Therefore, we use a classical Burt and Adel-
son algorithm (see [BA83]) with a Gaussian smoothing
kernel, in order to favor neither frequency nor space
localization.
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3. ENTROPY FOR IMAGE COMPARISON

This section defines original “scale-innovation maps”
and the entropic measures they involve.

3.1. Entropy

Considering an image X of N, columns and N; rows,
with a probability function Px(k),k € {0,...,255},
Fisher’s information quantity ¢ is defined as [Shan78]:

Vk €{0,...,255}, gx(k)=—log Px(k). (2)

gx 1s the amount of information brought by a pixel X; ;
whose grey level is k. The information brought by the
image X is the average of g, called the entropy H(X):

Ni—1N:-1

H(X)= —ﬁc—im DD ax(Xiy). ®3)

i=0 j=0

Considering another image Y and the joint probability
function Px y(k,1), (k,1) € {0,...,255}2, the joint in-
formation quantity ¢x y and the joint entropy H(X,Y)
are defined by replacing Px (k) with Px y (k,!) in equa-
tions 2 and 3. H(X,Y) represents the entropy of X and
Y seen as a 2D random source.

3.2. Mutual information

Mutual information — also known as Shannon’s in-

formation — is defined as the amount of information

brought by the “overlapping” of the two sources:
IX,)Y)=H(X)+H(Y)-H(X,Y). (4)

A simple calculus leads to:

1 N;—1N.~-1
I(X,Y) = m ; ; TX,Y(Xi,j;Yi,j)a (5)

where r is the mutual information quantity of two grey
level occurrences (k,!) € {0,...,255}%

Px (k) Py (1)

Frr (D) (©)

rx,y(k,1) = —log

r 1s a measure of the information quantity brought by
the coupling of & and [.

Let us notice that the contribution of any subset A
of X and Y to I(X,Y) can be computed as:

1
L(X,Y) = 55 2 "X Y) (1)
‘ (i.d)€A

I4 is called the partial mutual information of A in
(X,Y).
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Figure 2: Original image, CIMENE and Entropic
Scalar Detection images’

3.3. A distributed entropic measure

Entropic measures have already been applied to im-
age processing as global state variables of an image
in [TU96, CVSM95, Dja93]. From an image analysis
point of view, entropy and mutual information lack
spatial localization. Thus, we propose a distribution
process that enables the production of mutual infor-
mation maps. A similar process was first used for self
information in [Low84, Low83]. Consider two pixels
Xi; and Y; ; of X and Y at the same position (3, 7).
Let every pixel of £({X,Y) be defined as follows:

EX,Y)ij =k xrxy(Xi;, Yij) (8)

k being a normalization factor that enables & to be
displayed using 256 grey-levels.

€(X,Y) is called a CIM image. It gives every pixel
(,7) a grey tone proportional to the amount of infor-
mation brought by the coupling of the two images at
that point.

4. ENTROPIC SCALAR DETECTION

Now, let us use spatially distributed entropic measures
on consecutive detail images of a multiscale analysis to
perform Entropic Scalar Detection (see figure 1).

4.1. CIMENE Images

Considering an image X and a multiscale decompo-
sition gy (equation 1), we define the CIM in scales,
called CIMENE image of rank n as follows:

Vne{l,..., N}, xn(X) = €(Xn-1, Xpn) 9
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2-basis ESD
Figure 3: Building extraction using the ESD

Original

The higher x,{X,Y) is, the more information the pixel
of coordinates (¢, j) brings to the coupling of the scales
n—1 and n, and the more innovative this pixel is be-
tween the two scales. CIMENE images are thus called
scale innovation maps. :

Three different kinds of features appear on CIMENE
images (see figure 2): black non-innovative lines that
correspond to stable zero-crossings of the Laplacian
(i-e. contours of the objects), large dark areas that cor-
respond to large primitives that have the same appear-
ance in the considered scales (i.e. large non-innovative
primitives) and bright innovative objects that appear
between the two scales (i.e. objects of a given range
of sizes). It has been shown that those bright objects
have at least one dimension in the interval [27~1 2" in
a Xn image.

4.2. Automatic Thresholding

The next step in Entropic Scalar Detection is to select
the pixels that bring information to the coupling of
scales in the CIMENE image, i.e. those with bright
grey levels (see figure 1). The threshold that separates
scale innovative pixels from the others is determined
automatically as follows.

Consider a CIMENE image xn(X) and a thresh-
old 0. A, is the set of pixels for which x,(X)i; > 0.
We define the mutual information detection ratio as
plo) = I4, /1. Experience shows that this ratio is con-
stantly equal to po = 0.5 for thresholds visually deter-
mined to provide homogeneous detections over a set of
42 CIMENE images. Thus, the threshold can be auto-
matically computed on any image by selecting ¢ such
that p(co) is as close to po as possible. This method
reaches the performances of a human operator, with a
mean relative error of 5%, which is definitely satisfying
since the reference thresholds are visually determined
with an estimated precision of 5% by a human opera-
tor.

4.3. Entropic Scalar Detection Algorithm

Now that the three steps of entropic scalar detection
exposed in figure 1 are defined, we can propose the
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algorithm of the Entropic Scalar Detector of rank j,
called ESD;:

e perform a dyadic multiscale analysis ;41
o compute the CIMENE image x;(X),
e compute the threshold o and threshold x;{X).

ESD;(X) contains all the objects whose size ranges
from 2/~ ! to 2/ in at least one direction.

5. EXPERIMENTAL RESULTS

Since the only Entropic Scalar Detection (ESD) selec-
tion criterion is size, it provides interesting features in
terms of detection. In this section, we use the £SD to
detect man made structures in aerial images.

5.1. ESD and Feature Extraction

The ESD is fully automatic and robust with respect to
photometry, unlike classical feature extraction methods
like the morphological top-hat (see [Ser82]). It is also
robust across various sensors — it turned out to be
stable on SPOT, simulated SPOT-5, ERS-1 images and
aerial photographs. Eventually, the ESD can detect a
bright roof on a dark soil as well as a dark building on a
bright ground (see figure 2). This is all the more crucial
as the criterion of size is often more accurate than any
other criterion for the low-level detection of man-made
objects like roads or buildings in aerial images.

5.2. Building Detection: Performances

Assuming that a building is about 7 m wide, we use
an ESD of rank 2 on 1.75 m resolution aerial images
to detect them. Indeed, this algorithm extracts the ob-
jects whose smaller dimension is between 3.5 m and 7
m. An example is presented in figure 3. The results, as
compared with a human operator, are presented below
for 5 different areas issued from 4 different regions of
France at the same resolution:

Area | Flins | Hoen. | Labou. [ Miram. | Truch.
Rate | 75% | 76% 96% 90% 79%

Moreover, the false alarm rate is quite stable no
matter how many targets the image contains: despite
its statistical nature, the ESD is robust with respect
to the content of the image.

5.3. Comparison with the Top-hat Operator

The ESD and the classical morphological Top-hat op-
erator provide the same kind of results when tuned
on the same size intervals. In [Pap96}, the results of
the ESD have been compared to those of the Top-
hat in order to assess the accuracy of the methods
and the relevance of the criteria of both algorithms.
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Figure 4: Comparison of the error versus detection rate
plots of the ESD and the morphological Top-hat.

Our reference database is made of manually detected
buildings in aerial image. We compared the error rate
versus detection rate plots provided by Top-hat and
CIMENE images thresholded at various levels (figure
4). It turned out that the ESD behaves better than
the Top-hat on all the tested images: for the same er-
ror rate, the thresholded CIMENE image contains more
buildings than the Top-hat. Eventually, the Top-hat is
neither automatic nor robust towards the sensor and
the statistics of the image.

6. CONCLUSION AND PERSPECTIVES

In this work, we have presented an original and ro-
bust scale-based detection method that offers interest-
ing perspectives.

First, the good results of the entropic scalar detec-
tor show that scale is a relevant detection parameter for
some objects at least, provided a genuine scale-based
method is used. Moreover, they show that, even though
they are limited for usual image analysis [Low84, Low83]
entropic magnitudes are well suited to multiscale im-
age analysis. Entropic tools are originally measures of a
deviance to the equilibrium, therefore, they are useful
when such an equilibrium exists. Unlike raw images,
detail images are strongly centered around an “equi-
librium” value, i.e. zero. They can be analyzed by
distributed global entropic tools, while raw images can
only be analyzed this way on small stationary windows
{Maig6].

The success of this approach also offers interest-
ing theoretical perspectives. Two major trends exist
in the field of multiscale image analysis. On the one
hand, the wavelet theory provides a variety of orthog-
onal scale-based decompositions [Mal89], but remains
mainly algebraic and lacks the notion of scale and space
dependence. On the other hand, Scale-spaces provide
an interesting tracking of the behavior of structures
along scales [LT94, Koe88], but lack scale-orthogonality
and efficient implementations. Entropic multiscale de-
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tection stands between the two former theories: it uses
wavelet techniques to perform discrete orthogonal mul-
tiscale decompositions while, like Scale-spaces, it is based
on the behavior of features through scales. The general-
ization of the ESD (resp. CIM ENE) to a large range
of scales and the merging of its results in a “feature
Scale-space” (resp. an “entropic Scale-space”) could in-
troduce a Scale-space geometry into the very algebraic
wavelet theory, and efficiently merge some advantages
of the two approaches.
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