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ABSTRACT

This paper proposes a new spatial-temporal MRF model for the
detection of missing data (also referred to as blotches) in image
sequences. The blotches in noise-corrupted image sequences
exhibit temporal discontinuity charaeteristic which is commonly
used for the detection of blotches. However, the badly motion
compensated pixels will also appear as temporal discontinuities,
thus making it difficult to distinguish the true blotches from the
poorly motion compensated regions. The proposed MRF model
addresses the problem of incorrect detection. It is found that the
degree of false-alarm in the detection of the blotches in image
sequences can be reduced by using a moving-edge detector in
the MRF model to identify the blotch-edges from the moving-
edges.

1. INTRODUCTION

Restoration of degraded motion pictures is a highly labour-
intensive and extremely costly undertaking. A much publicised
event[1] is the restoration work of Disney’s 1937 masterpiece -
Snow White and the Seven Dwarfs, which was re-released in
digital form in 1993. A motion picture restoration system which
can automatically remove artefacts in film archives will be of
great interest to the entertainment and broadcast industry. The
typical artefacts in degraded motion picture material are bright
and dark flashes, referred to as ‘dirt and sparkle’ in motion
picture industry. The successful treatment of these blotches of
missing data in image sequences involves three processes:
motion compensation of the moving objects in the image
sequence, accurate detection of these missing-data[2] hereby
referred to as blotches, and follow by the reconstruction of the
detected blotches using either spatio-temporal filters[3],
interpolation techniques [4] or Markov Random Field (MRF)
model-based approach {4, 5].

Some of the existing methods[2] for the detection of missing
data in images sequences are: Spike Detection Index (SDI)
method, 3D auto-regressive mode! (AR) and MRF model. All
these methods[2] require robust motion estimation algorithm to
motion compensate the moving objects in image sequences,
otherwise the badly motion compensated pixels will be treated
as temporal discontinuities and will therefore be confused with
the blotches which also exhibit temporal discontinuity
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characteristic[6]. It is not always practical to employ pixel (or
sub-pixel) accurate motion estimation algorithm due to the
enormous amount of computational cost incurred and the very
large amount of data involved in restoring a motion picture. A
multiresolution motion estimation scheme using full-search
block matching algorithm[2] is used here for the purpose of
motion picture restoration. However, none of the block
matching algorithms could yield motion vectors that perfectly
and completely describe the motion in image sequences, not to
mention the poor performance of the motion estimation
algorithms due to the presence of noise in old motion pictures.
As a result, the moving regions that cannot be correctly motion
compensated by the (estimated) motion vectors will be falsely
detected as blotches (temporal discontinuities) in the existing
‘dirt & sparkle’ noise detectors[2]. The degree of incorrect
detection is measured and referred to as false-alarm in
Kokaram’s paper[2]. In this paper, we attempt to address this
problem by formulating a new spatial-temporal MRF model for
more accurate detection of noise in corrupted motion pictures.

Maximum A Posteriori (MAP) probability and Markov Random
Field (MRF) theory[7] provide a convenient and consistent way
of modelling context dependent entities such as image pixel
intensities and other spatially correlated features. The detection
of the blotches in image sequences is formulated as a MAP
estimation problem which requires two pdf models: the
conditional pdf of the observed image intensity given the
blotches, called the likelihood model, and the a priori pdf of the
blotches which we attempt to model. The novel feature of our
approach is the formulation of a new a priori function which is
able to differentiate blotches from the temporal discontinuities
due to poor motion estimation, thus reducing the degree of
false-alarm in the blotch detection algorithm.

2. A NEW SPATIO-TEMPORAL MRF MODEL

Consider a finite lattice S which denotes the pixel lattice of two
adjacent frames from a sequence, and ;(7)be the observed

intensity at each site 7 of the lattice. Let ®% denote the first-
order (same as Geman's definition [5] of first-order
neighbourhood cliques) spatial neighbourhood of site i. Define
a discontinuity frame, D which denotes the blotch detection
frame which is to be estimated using MAP formulation. Let
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d(7) = 1 indicate the presence of a blotch at position 7 and
d(7)=0 denote no blotch at position 7 . I denotes the
observed image frame with the intensity of each pixel, i(F). Let
i(D) denote the single motion-compensated neighbour pixel
from the neighbour frame.

The same likelihood function as described in [2] is used in our
model as follows:
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To compute the motion vector,y of the proposed model, a
multi-resolution with full-search block matching algorithm is
used.

The prior model encourages the organisation of the corrupted
regions as connected regions, and is given as follows:
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Where f(d(F)) is the number of the four neighbours of d(F)
with the same value as d(7), §(.) is the delta function, and
function ¢(i(7), V) is a moving edge detector between frames.

The novel moving edge detector is employed in the model to
reduce the degree of false-alarm during the detection process. A
moving edge detector function is added to weight the a priori
model of the distribution. However, this weight is dependent on
the gradient of the edge of the pixels under consideration. This
follows from the observation that small errors in motion
estimates tend to result in larger temporal discontinuities in
regions of sharp edges. Hence, the detection field of these pixels
cannot be equally emphasized by the likelihood model
(temporal discontinuity) as that would almost always lead to
them being flagged as blotched. The effect of this moving edge
detector function ¢(i(7),v) will be apparent by examining the a

posteriori distribution as shown in equation (3).

Having formulated (estimated) the prior distribution and the
likelihood function of the corrupted regions, optimal results
could be estimated from these sources of knowledge by using

Bayes’ criterion. Combining equations (1) and (2), the a
posteriori distribution can be expressed as:
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a, By, B, are the adjustable parameters used in the estimation.

The significance and setting of these parameters can be found in
[2]. @(i(F),D) is included in the a posteriori distribution
because of the strong dependence of the likelihood function on
the motion vector estimate. The poorly motion compensated
regions will appear as temporal discontinuities and will be
confused with the true temporal discontinuities (i.e. blotches),
hence the likelihood function is error-prone in image regions
which undergo non-translational displacement. Although using
three frames for detection can reduce the problems caused by
occlusion and uncovering of objects[2], poor estimate in the
vicinity of the moving edges is still a problem to be solved in
the existing blotch detection algorithms. The moving edge
detector function ¢(i(F), D) can be seen as a weighting function

to alleviate the false detection of the temporal discontinuity that
is due to poor motion estimate; the prior pdf will be weighted
more than the likelihood function when a moving-edge is
found.

To find the MAP configuration of the detected frame, given the
image and the model for the missing regions, a number of
optimisation methods[7] such as Simulated Annealing (SA),
Iterated Conditional Modes (ICM), genetic algorithm, and
Mean Field Annealing could be used. In this paper, SA is used
in the optimisation process.

3. MOVING EDGE DETECTOR

The moving edge detector, ¢(i(F),0) uses a moving edge

detector to overcome the problem of false alarms at moving
edges. This is essentially due to poor motion estimation at
moving edges. The moving edge detector consists of two steps:
a connected-edge detector and a moving-edge detector. The
entire algorithm is formulated as follows :

(I) First, connected-edge detection is performed for each pixel.
The connected edge detector determines whether a pixel lies
on an edge that is connected with two other edge pixels,
which lie in the 8-pixel neighborhood as shown in figure 1.
The central pixel is the one for which connected-edge
detection is being done. The connected-edge detector works
as follows :

(Ia)Gradients are calculated along the 4 pairs of neighborhood
pixels, (I, g,) as shown in figure 1. A (possible) connected-
edge is flagged if :

II,- g.!>1, wheren=0,1,2,3 @

where T, is a threshold set to optimistically include edges.
(A value of around 25 has been experimentally found to
yield optimal results). I, and g, represents the two pixels
forming a pair.

(Ib)In our implementation, the connected-edge is defined as any
3-neighbour pixel that exhibits a significant change in
gradient as described in equation (4). The gradient of the
remaining 6 neighboring pixels (other than the gradient pair
(Iy, g0), must be examined using equation (4). If the
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gradients are found on 2 of these 6 neighbors, the central
pixel is then flagged as a connected edge. There are
therefore 3 pixels lying on an edge.

I I, I;
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Figure 1. 8-Pixel Neighborhood For
Connected Edge Detection

(II) The connected-edge field found from step (I) above
comprises both the moving-edges and blotch-edges.
Hence, the connected-edge field is passed through a
moving-edge detector, which detects the moving-edges
based on the temporal discontinuity property of a blotch.
Consider an example depicted in figure 2. ‘ce’ represents
pixels flagged as connected edges. The central ‘ce’ pixel is
the one under consideration now. ‘b’ represents pixels
lying in the interior of the blotch. ‘nb’ are pixels lying
outside the blotch. Figure 2a demonstrates the case of a
blotch edge whereas figure 2b shows a moving-edge.

nb ce b nb ce nb

nb ce b nb ce nb

nb ce b nb ce nb
(@) (b)

Figure 2. Blotch Edge Detection

Now, by the definition of a blotch, the ‘b’ pixels will have a
large motion-compensated temporal difference in both the
succeeding and preceding frames (3 frames are taken into
consideration). A moving-edge, on the other hand, will have
well-compensated pixels in the region around it, since it
will be surrounded by more or less homogenous, non-
blotched areas in its neighborhood. The pixel is therefore
flagged as a moving-edge if equation (5) is satisfied for all
the neighboring pixels, excluding the ‘ce’ pixel.

G + dx; + dy;, n-1) - I, n) 1< T, OR
TG+ dxp + dyz, n+1) - I(i, n) I < 15 5)

Here I(i, n) represents the neighborhood pixel, I(i + dx; +
dy;, n-1) represents its motion compensated pixel in the
previous frame and I(i + dx, + dy,, n+l) represents its
motion compensated pixel in the next frame. Bi-
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directionality is used to account for the occluded or
uncovered areas.

(III) At the end of step (II), the entire image has been split into
two logical regions: non-moving and moving edges. The a
priori model is weighted proportional to the strength of the
gradient across the moving-edges:

0Gi(7),5)=V.(lo- g0 )’/ T° (6)

where y is a constant set to 90; for non-moving edge, y
defaults to zero.

This new moving-edge detector avoids the problems of false
alarms at moving-edges by lowering the emphasis of the
likelihood model as described in equation (2).

4. RESULTS AND PERFORMANCE ANALYSIS

Three test image sequences: 2 image sequences with artificially
added blotches and 1 real image sequence (obtained from an old
movie archive) are used in our experiments. On both the
synthetic sequences, the blotches were added onto the frames
using a Gibbs sampler employing Ising’s model[8]. The blotch
pixels are given a variance between 5 to 10 grey-levels, which
are closer to the characteristic of the real blotches found in old
movie archives. The results of our proposed model is compared
and evaluated with Morris’ MRF model as presented in [2].
Two parameters: percentage of correct detection, %C (of the
blotches), and the percentage of false detection, %F (which is
also referred to as faise alarm in [2]) are used to evaluate and
compare the performance. The robustness of the proposed
algorithm is demonstrated through the blotch detection
examples in different image sequences such as the Salesman
sequence and the Western sequence as presented in {2]. The
results are obtained from an average of 10 frames per image
sequence. The results are tabulated and shown in Table 1. It can
be seen that with the new MRF model, the false-alarm is
reduced significantly whereas the number of correctly detected
pixels is almost the same as Morris’ model. By using Morris’s
parameters (¢, B,+y, B+y) indiscriminately without using the
moving-edge detector (see Table 1 second row of entries),
although the false-alarm is reduced, the number of correctly
detected pixels falls as well.

Figure 3a shows an image obtained from an old movie archive.
The blotches are being detected using the proposed algorithm
and depicted in figure 3b. Figure 3c shows the detected blotches
using Morris’ MRF model as reported in [2]. It can be seen
from figures 3b and 3c that the false alarm along the moving-
edges is reduced in the newly proposed MRF model.
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(a)

(b) ()

Figure 3 (a) A sample of an old movie archive (b) The detected blotches using the proposed MRF model
( ¢) The detected blotches using Morris’ MRF detector

Salesman Western
Detection
Algorithm % C %F % C %F
1 Morris model
[2,8] (parameters | 91.70 1.26 | 93.25 | 059
o=2,B,;=30,B,= | (444) | (825) | (426) | (386)
30)
2 Morris model -
[2,8] (parameters | 80.14 | 0.10 | 84.85 0.08
a=2, B,=120, (388) (65) | (387) | (52)
,=120 )
3 | New MRF Model
(parameters a=2, | 89.41 0.52 | 9194 | 0.33
B1=30,B,=30, (433) | (340) | 421) | (216)
v=90)

Note: The entries in parentheses denote the absolute number of
pixels detected/incorrectly detected;. %C=[(no. of pixels
detected)/(total no. of bloich pixels)] x 100% ; %F=[(no.
of incorrectly detected pixels)/(total no of pixels in a
frame)] x 100%

Table 1. Correct Detection/False Alarms Performance between
Morris MRF Model and the new MRF model
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