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ABSTRACT

The optimum computation of multi-dimensional (multi-D)
image moments is presented in this paper. The developed
algorithm 1is designed for the general case, specifically, to an
arbitrary moment order R and to dimension d. The properties
of the algorithm makes it best suited for obtaining the well
known 2-D Zemike moments when they are computed through
their relation to ordinary moments. Computational complexity
model shows that the proposed algorithm takes only
(NR+NYN+R+1) additions with a negligible amount of
multiplications, when an N-sized image 1s used to generate 2-D
ordinary moments up to the order R. While the speed
improvement of obtaining Zernike moments is of the order
O(R) with respect to direct computation through Zernike
polynomials. The regular structure of the processing elements
and the minimum no. of operations of the algorithm makes it
best suited for hardware and software implementations.

L INTRODUCTION

The methods of Zernike moments have been presented as the
notion of the general theory of image moments [1]. The most
simple and basic form of moments is known as ordinary
moments, this was first introduced by Hu [2] and since then
they were used in pattern recognition problems. Other forms of
moments also exist, i.e., pseudo Zernike [3], Legender [1],
complex {4] etc.. Zemike moments were proven to be the most
powerful among all moments in image representation and the
optimum encoding of essential features of an image [1],{3],[5].
Also the simple construction of invariants (features that are
invariant to translation, rotation, and scaling) is another
characteristics {1]. Most of these works, as well as others [6]-
[8], show the necessity of moments theory in pattern
recognition problems with a rapid increase of Zernike moments
which requires the generation of high order moments. In [7],
high order moments were used in robot sensing techniques,
while [8] discusses the 3-D moment invariants and their
extensions.

The direct computation of Zernike moments (through the
Zemike polynomials) suffers from huge arithmetic operations
which makes it impractical for real-time implementation or
large statistical data tests. Fortunately, the possibility of the
efficient computation of Zernike moments from ordinary's were
investigated lately [9], a review of the proposed computation
scheme is demonstrated in Sec.II.

Many works have addressed the computational theory of
moments both in the sequential and the parallel mode [10]-[18]
in a case that most of them concern the computation up to the
third order (that is considered sufficient for obtaining the so
called moment invariants). But the computation of Zernike
moments into arbitrarily high orders requires an efficient high
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order moments algorithm orelse the computation process
through ordinary moments will not be as efficient as expected
and may have a delay that exceeds that of the direct
computation through the Zemnike polynomials. The reason
beyond this, 15 that the number of ordinary moments required
to generate the Zemike moments is more than the latest them
self which means simply more operations and the existing fast
algorithms may not solve the problem on the above terms.

One of the most powerful moments generators is through the
method of digital filters [10] where the no. of operations is the
minimum compared to all existing fast algorithms. To see how
digital filters are cascaded to produce moments see [10]. So,
the extension of the most optimum moment algorithm into high
orders will be the topic of Sec.IIl. The complexity of computing
mode] for testing the speed of the proposed algorithm linked to
the Zemike moments is presented in Sec.IV. conclusions are
given in Sec.V.

IL EFFICIENT COMPUTATION OF
ZERNIKE MOMENTS

As stated by Teague [1] that, Zernike moments are related to
ordinary moments if they are calculated inside the unit disk. A
systematic approach is presented here to handle the
computation of Zernike moments through the well known
ordinary moments which is defined on the whole array domain
(not only inside the unit disk). Then using the proper
normalization it will be as if it is computed inside the unit
disk. With this major move, the computation of Zernike
moments can be performed (directly) through the fast moment
algorithms which is designed specially for ordinary moments. -

To mvestigate the computation scheme and the possible
improvements, it can be shown easily that Zemnike moments
can be modified to be given as follows:
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where i=+/-1, S=(k-L}2, Apyis.the Zemike moment of
order R, Bryg coefficients are given in [3]. Also, L takes

now only positive integer values subject to the condition (R-L)
is even and L <R. This have been accomplished through
making use of the complex conjugate property which is
AgpL = (AR,—L)* that helps 1n getting the -ve values of L. In
addition, Z,, values are given by:
G
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where D=(N+1)22. As it can be seen, ordinary moments

calculated inside the wumit disk are functions to ordinary

moments M;;. This brings us to a great interest since the fast

moments algorithms [10]-{18] can be designed to calculate
ordinary moments with the maximum speed and efficiency.
Note that Mj; are ordinary moments defined as:

N N P
M; =T Zf(n,mjn'm -{4)

n=0m=0
here the image f must be defined inside the circle

X2 +y*<N/2.

The major resource of computation redundancy is through the
success of performing integer additions if computation is
intended up to the third order. Unfortunately, extending the
computation to the general order of Zernike moments
(specifically to orders more than three.) requires some review
to develop a fast ordinary moments algorithm to higher orders.
This is because, most of the fast moment algorithms are
designed for low orders (not more than three) knowing that not
all these fast algorithms may result an efficient computation of
high order Zernike moments where one must use (floating
point) FLP arithmetics. All what is needed right now is the
computation of ordinary moments given in Eq.(4) on the
condition that the complexity of computing is at its minimum
rate so that and afier all, the whole operation complexity of
Zemnike moments from the above is less than that of the direct
computation, see [1] for details on direct computation. The
optimum computation of Eq.(4) 1s the topic of the next section
towards a very general fast algorithm extended to any given
order and expandable to higher dimensions as well.

II1. HIGH ORDER MULTI-D MOMENT
GENERATING ALGORITHM

According to what had been discussed by Hatamian [10], the
1-D moment of order p of the sequence f{n) and length N+1
can be defined as

N
up = Tf(n)N-n)° —A5).

=0
obviously the above moment is computed with respect to the
reference point N and the notation in Hatamian's work was

{ u}% }, we have slightly change it to {ug} to keep up with the
papers notations. And using a filter that can be realized by
cascading a number of lower order filters which have a transfer
function of the form:

- 1
H = —
P @ (Z-1 P+1
He solved the impulse response problem of the above filter up
to the 3rd order to prove that the output of this filter is a linear
combination of ordinary moments {10]. The most important
features of this computation scheme is the minimum no. of
operations required to compute moments compared to other
fast algorithms, see for instance [11). However, if Zernike
moments is the computation issue, orders more than three are
needed and the algorithm does not fit in its mean shape.

(6)
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Within the framework of this paper, we will try to extend the
moment computation by digital filters to high orders (a general
form up to the order p). The first step towards this general
algorithm is finding the impuise response of the transfer
function given in Eq.(6), which we found it to have the form:

~ |4 .
hp(n)=u[n—(p+l)]1:11{l+[n—(p+l)]b, [ ¢

where b, =1/1 on the interval [1,p] and b, =1 elsewhere,

moreover, and by expanding the above binomial product the
impulse response may now take the form

~ P
hy (0) = u[n—(p+D)] ZOB?[D—(IH'I)T -(8)
r=
where the calculation of B are given in Appendix.A. In fact,

we are of most interest in the output of the filter, this output in
response to f(n) is given by:

p _n—(p+]) r
yp(m)= ZOB? ZO f()n-(p+D-sl" .9
r= s=

and evaluating the output at n = N+(p+1) yields
p N
Yp(N+p+1)= X B} Tf(H(N-s)"

=0 s=0

.-(10)
or simply
P
yp = TBPuN
r=0

as can be seen, the output y, is a linear combination to

(11)

ordinary moments pp , (with =0 to p). The problem now is

finding ), in terms of Y, , this can be accomplished easily,

hence, we may write Eq.(11) in the following inverse form

Py = %CEYr
r=0

where CP  are the coefficients obtained from Eq.(11) through

the matrix inverse of the B coefficients. And for the 2-D
moment of order (p,q), it can be shown easily that, see
Appendix.B:

.(12)

-(13)

where CPJ =CP C2, clearly it is very easy to expand it again

to a third dimension (3-D moments) or more. It must be noted
that in Hatamian's work [10], the above equation was ina
vector form that has no general rule for generating moments up
to high orders (the maximum is order 3). Again Eq.(13) can be
put in the array form, if one wishes, which might support a
multiplication redundancy though it will not affect computation
since it does not depend on N (the image size). The 2-D
moment computation by digital filters is shown in Fig.1 where
we call blocks in the first row (horizontally connected blocks or
filters) by row filters while the vertically connected blocks will
be named as column filters.
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Fig.1 The suggested 2-D digital filter for generating a linear
combination of image moments up to the order (p,q). Each
block in the array is a single-pole filter similar to the one
below in Fig. 2.
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Fig.2 A single-pole digital filter for generating zero-order
moment. This is equivalent to an accumulator (adopted
from [10]).

"

4]

The next step is expressing moments {Mij defined

Eq.(4)} in terms of {u}"}, this can be done by changing the
D factor in Eq.(3) which afterwards takes the form:

where p.ij , HOW ¢an be calculated directly from Eq.(13), thus
Eq.(14) must be used instead of Eq.(3).

IV. COMPLEXITY OF COMPUTING

The performance of the proposed algorithms will be

discnssed in this -section. The no. of arithmetic operations’

(additions and multiplications) will be used as the measure of
the computational complexity for both Zernike and ordinary
moments. To clarify each case, the complexity model will be
classified into the categories as given next.

1. Complexity of Computing Ordinary Moments via Digital
Filters

Up to the (p,q)th-order (assuming R=p=q) the no. of
additions required to generate moments from digital filters

(i.e., generating Ypq ) is given by:

NA4 = (R+DN2 +(R+1)N (15)
where NA,
moments {y,q} from digital filters, N is the image size. The

above no. of additions contributes mainly to the computation
time due to its dependency to N. Furthermore, the no. of
operations required to get p out of y through performing
Eq.(13) is found as:

AR)=2p(R)+2R -1 ..(16)

1s the no. of additions required to generate
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where p(s)=s(s+1)/2, and A(R) is the no. of additions.
Also an equal amount (to A(R)) of multiplications is
required.

When the computation of 2-D moments is devoted for high
orders, the integer accumulator is not suited due to the very
high word lJength that is increased as one moves towards high
and high orders. On the other hand, the use of scaling and
truncation must be accompanied with a well planed correction
algorithm since computation is performed recursively.
Therefore, computations are performed throungh an FLP
arithmetics to prevent overflow of data as one deals with large
size of data and high order.

2. Complexity of Computing Zernike Moments

The computation of Zernike moments up to a certain order
requires the generation of ordinary moments up to the same
order, but the no. of ordinary moments is more than that of
Zermike moments and is given by:
N, =p(R +1) (A7)
comparing the above to the no. of Zemike moments (given
later in Eq.(19)) we can see that the additional no. of moments
(a factor of two) makes the computation of Zemike moments
through ordinary’s a critical issue unless the ordinary moment
generation is very efficient. For instance, it can be shown easily
that a generalization of the recursive moment algorithm given
in [11] towards high orders calculations would not be more
efficient and faster than direct computation through Zemike
polynomials. Nevertheless, the complexity model discussed
below shows the success of the algorithm developed in this
paper.
A. Zernike moments through ordinary moments

According to the previous discussions Zemike moments can

be computed from ordinary moments that are computed by
digital filters, the total no. of operations is given as

NO, =[(NR+NYN+R+1)+MR)] . +[MR)]__. +E(R)
..(18a)
where NO, is the total no. of operations required to obtain

Zemike moments from ordinary’s, and §(R) is the po. of

operations required to transform ordinary moments to Zemike
moments by performing Eq.(1), with simple enumeration it is
found that:

g(R)=[1R(R+1)(R +5)] +[~1—(R+1)[(R +1)? -7”

6 adds 6 mults
..{18b)

Obviously, the computation of Eq.(18b) i1s of the order of

O(Rs) and for large N or N>>R, which 1s the case mostly, the

computation of Eq.(l1) can be considered to be of the

O(RN2 +R2N). In fact the computation of Eq.(1)can be

reduced much further through matrix factorization especially

for the case of small N and where N<R .

B. Direct computation through Zernike polynomials
If computation is up to the order R, then the total no. of
Zernike moments is p(R+1), and making use from the
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complex conjugate property of obtaining Zernike moments, this
number can be reduced to half the mentioned, so

N, =Bp(k+1)] (19

where N, is the no. of Zemike moments to be calculated, the
notation ]_x] is the least integer greater or equal to x. The
total no. of operations would be given by:
NZz =[N,[26MN)]] .. [N ~R2GNV]]_

..(20)

2
where G(N) = [n(%) ] due to the circular image used in the

computation, NZ, is the total no. of operations required to
calculate the Zernike moments from the Zernike polynomials
for simplicity it can be expressed as

NZ, = l:p(R + l)ﬂ(l;—)zldds + [[?(R +1)-2R]nf)’ Lm

2D
obviously the computation complexity is approximately of the
order of O(RZN2 + RNZ) . Assuming that the time
complexity of multiplication is the same as that of addition, all

operations (in the direct method) must be performed through
FLP arithmetic due to the coefficients of Zernike polynomials.

3. Speed Improvement

A roughly estimated value for the speed improvement can be
interpreted from dividing the estimated order of computations
as follows

R?N? + RN?
Spim=—r——— (22
RN? +R2N
or it can be reduced to
RN+N
Splm= 23
P R+N @3)

where Splm is the speed improvement factor of obtaining
Zemike moments through the developed algorithm with respect
to direct computation. Obviously this factor for, large N, can be
of the order of O(R). Thus, if computation is up to the 20th
order, the suggested algorithm in this paper is twenty times
faster than the direct approach, though it can be fastened much
more since low order computations can be performed through
integer accumulators. In fact, obtaining high order ordinary
moments through integer additions are possible and we are
investigating this problem in the meantime.

V. CONCLUSIONS

The generalization of moments computation via digital filters
have been deveioped successfully to high orders and multi-D's.
The no. of operations required to generate moments is the
optimum among all existing fast algorithms. The new
generalization of the algorithm has been used in the efficient
computation of Zernike moments which takes heavy
computations 1in the direct approach. This computation scheme
has become possible by making use of the relation between
Zemike and ordinary moments keeping in mind that the
efficient computation are not possible without the use of the
optimum computation through digital filters. Of most
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importance, however, is that multiplications can be enormously
reduced in the new calculation of Zernike moments compared
to the direct approach.

High order moments bave & very high word length (the
length increases with the moment order) therefore all
arithmetics, must be performed via FLP operations. In fact, a
well planed correction algorithm for the scaling or shifting of
moments data (calculated by the digital filter) or the use of
high word lengths adders for hardware implementations can
greatly fasten computations through integer additions. It is
shown also that, the expandability of the algorithm to high
dimensions 1s straightforward and unusually simple, a perfect
solution to the problem of finding the impulse response of the

transfer function H,, =1/(Z~DP*! exist. The high regular

structure of the algorithm makes it best suited for hardware
implementation and software as well.
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