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ABSTRACT

Image coding for power- and bandwidth-limited continu-
ous-amplitude channels is considered. We address the prob-
lem of power and bandwidth allocation for subband image
coding where the goal is to minimize the overall end-to-end
distortion. The decomposed image is modeled as a com-
posite source, and an algorithm for allocating power and
bandwidth among the subsources of this source is proposed.
The algorithm is used to compute estimates of the optimum
performance theoretically attainable (OPTA) for subband
image communication over a power- and bandwidth-limited
AWGN channel. A gracefully degrading subband image
coder with dynamic power- and bandwidth allocation is
simulated and the performance compared to OPTA and to
results of other schemes for robust image communication.

1. INTRODUCTION

During the last decade, subband coding has become a pop-
ular method for image compression. A broad range of
schemes for coding of the subband signals have been pro-
posed. Often, rate allocation is performed among the sub-
bands, and even within the subbands, to maximize the cod-
ing gain and exploit variations in the local image statistics.

There are various methods for rate allocation. Two of the
most popular algorithms, producing an overall fixed rate,
were proposed by Shoham and Gersho [1] and Westerink
et al. [2]. These “equal-slope” algorithms are based on al-
locating rate to the different sources, such as to minimize
the total distortion under an overall rate constraint. The
operational rate distortion curve of each source is used in
the optimization, and the optimum is found at a point of
equal slope of the rate distortion functions, where the total
bit budget is exhausted.

On the other hand, Khansari and Vetterli [3] proposed
an algorithm for optimum allocation of power to the sub-
sources of a composite source for transmission over a power-
constrained channel. The optimum is found at the point of
equal slope for the individual distortion power functions.

However, to the authors’ knowledge, there exist no algo-
rithms for allocating both power and bandwidth. This is
an important problem e.g., for mobile image communica-
tion and image broadcasting, where the channels typically
are both power- and bandwidth-limited. The overall design
criteria for a system operating over such channels will be
to maximize the quality of the received signal, given the
overall channel power and bandwidth constraints.

We propose a method for finding the optimum power
and bandwidth allocation among the subsources to mini-
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Figure 1. Transmission of a composite source.

mize the end-to-end distortion. For example, for a subband
coder this amounts to finding how much channel power and
bandwidth to use for transmitting each subband. A sub-
band image coder optimized using the proposed algorithm
is simulated. The performance is compared to the opti-
mum performance theoretically attainable (OPTA) assum-
ing memoryless generalized Gaussian source models, as well
as to other published work on image communication.

2. PROBLEM FORMULATION

Consider the optimum transmission of a composite source,
Y, over a power- and bandwidth-constrained channel using
r = K/L channel symbols per source symbol. This situa-
tion is illustrated in Figure 1. The source Y is split into
M subsources', U, m = 1,2,---, M. Each subsource is
then individually mapped by a mapping ¥,, to the modu-
lation signal set, using rm = Ky /Ly channel symbols per
subsource sample and a channel power of S,, per channel
symbol.

Assume we know the distortion-power-bandwidth curves,
Dw(Sm,rm), and the probability of occurrence for each
subsource, P, m = 1,2,-- , M, where ZfﬂPm = 1.
Note that Duw(Sm,rm) is the total distortion, including
both quantization distortion and channel distortion, result-
ing from transmission of subsource m at a rate of r,, channel
symbols per source symbol and using channel power S,.

The optimum power and bandwidth allocation problem
can then be formulated as:

M
{r}:l,isr'lm} b= g;l Pr.Din(Smy rm), (1

! Each subsource might for instance be one subband, or in the
case of classification-based coding, one class of samples.

3089



subject to the constraints

M M
Z Porm <r, Z Ppor,mSm < 1S, (2)
m=1

m=1
and

Sm>20, m=12,---M, rm20 m=12,---M. (3)

The nonnegative constraints on the power and the band-
width given in Equation 3 are referred to as the realizability
constraints.

If one has mathematical expressions for the distortion-
power-bandwidth functions, the above equations can be
solved using the Kuhn-Tucker conditions. However, for
practical coding and transmission schemes, an algorithm
based on the operational distortion-power-bandwidth per-
formance can be employed.

2.1. A Greedy Algorithm for Power- and Band-
width Allocation

We propose a modification of the rate allocation algorithm
proposed by Westerink et al. [2] to take a channel power
constraint into account, in addition to a bandwidth con-
straint.

Assume we know the operational distortion-power-
bandwidth functions, Dm(Sm,rm), m = 1,2,--- , M, for
all subsources, found by applying either a training set, or
synthetic data to the mappings at hand. The algorithm
then works as follows: first, we trace the convex hull of
the composite distortion-power-bandwidth curve, assuming
equally distributed channel power among the subsources,
i.e., S;n = S, starting with the lowest possible rate for each
subsource. It was shown in [2] that this gives the optimum
rate allocation for a distortion constraint. Then for the
given optimal rate allocation, we trace the convex hull of
the composite distortion-power-bandwidth curve for a fixed
bandwidth allocation, as found in the previous stage of the
algorithm.

The algorithm can be described as follows:

1. Given r and S/N. Allocate the lowest possible rate

for each subsource. Let the rate allocated for sub-
source m be ry,, m = 1,2,--., M. Furthermore, let

all subsources have the same amount of channel power
Sm=8Sm=12..- M

2. For subsource m, m = 1,2,..- , M, calculate

_ (km - rm)
8m = {k,,.|122);rm} [D(S, km) — D(S, rm)] . (4)

3. Find the subsource for which the maximum of s, was
obtained:

n= argmax  Sm, (5)
{m| m=1,2,-.. M}
and update the rate of subsource n: r, = k.

4. If the current rate is sufficiently close to the desired
rate, i.e., r—EJg=1 Pprm < €, go to Step 6. Otherwise,
continue.

5. Repeat Steps 2, 3, and 4, but do Step 2 only for sub-
source n.

6. Given rates rp,, m = 1,2,.-. , M. Allocate the lowest
possible power for each subsource. Let the power allo-
cated for subsource m be Sy,, m =1,2,.-- | M.
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7. For subsource m, m =1,2,--- , M, calculate

$Sm= _ max Tm (Ko = Sim) . (8)
{Km| Km>Sm} D(I(m’ Tm) - D(S"u f‘m)

8. Find the subsource for which the maximum of s,, was
obtained:

n=  argmax Sm, (7)
{m| m=1,2,--- ,M}

and update the power of subsource n: S, = K.

9. If the current power is sufficiently close to the desired
power, i.e., rS— Zfﬂ PrrmSm < e, stop. Otherwise,
continue.

10. Repeat Steps 7, 8, and 9, but do Step 7 only for sub-
source n.

Notice that since the power and rate allocation is found
in a two-step process, and not jointly, the algorithm does
not guarantee a global optimum.

2.2. OPTA for Image Transmission

Consider finding estimates of OPTA for image transmission
over an additive white Gaussian noise (AWGN) channel
based on the assumptions: 1) subband signal decomposi-
tion, i) separate coding of each subband, and 1i¢) each sub-
band is well modeled by a memoryless generalized Gaussian
distribution (GGD). ML estimates of the GGD parameters
are computed for each subband. Then the greedy algorithm
suggested above is used to find the estimates of OPTA.

As an example, the monochrome 512 x 512 images
“Lenna,” “Barbara,” and “goldhill” were decomposed by
the 8 x 8 uniform nonunitary parallel FIR filter bank
“321” [4] and the GGD parameters were estimated for each
subband. Furthermore, the distortion rate function was
computed using Blahut’s algorithm [5] for GGDs with shape
parameter 17 € {0.4,0.5,-- ,2.5} = A,,. Then, for each sub-
band, the ML estimate of  was quantized to the nearest
value in A,,, and the resulting distortion-power-bandwidth
function employed for power and bandwidth allocation us-
ing the greedy algorithm.

Note that by using the channel capacity as an estimate
for the channel rate, the second iteration of the iterative
algorithm is avoided, as the optimal power allocation is
Sm = 8, according to the “water-filling” principle for an
AWGN channel [6].

The estimated OPTA for transmission of the subbands
can be converted to peak signal-to-noise ratio (PSNR) re-
sults for the reconstructed image by compensating for the
effect of the nonunitary filter bank “321” [4], and the differ-
ence between the SNR and the PSNR.

Figure 2 shows the estimated OPTA for the 512 x 512
monochrome images “Lenna”, “Barbara,” and “goldhill,”
at r = 0.125 channel symbols per pixel. For the employed
filter bank, and white channel noise, the difference between
the SNR for the subband signals and the PSNR for the re-
constructed image equals 17.70 dB, 16.44 dB, and 18.06 dB
for the images “Lenna,” “Barbara,” and “goldhill,” respec-
tively.

3. SUBBAND IMAGE CODING USING
CLASSIFICATION

In the previous section, each of the 64 subbands was treated
as a separate source, and power and bandwidth were allo-
cated to the different sources to minimize the overall dis-
tortion based on memoryless GGD models for each source.
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Figure 2. Estimated OPTA for separate coding and
transmission of each subband assuming memoryless
GGD subbands and an AWGN channel. r = 0.125
channel symbols per pixel

Classification is a powerful alternative to simply applying
rate allocation to the different subbands.

3.1. Subband Image Coder

A subband image coder based on the 8 x 8 uniform nonuni-
tary parallel FIR filter bank “321” [4] was simulated. All
subbands were treated as one composite signal and blocks of
8 x 8 subbands samples were classified into M = 5 classes,
U,,Us,--- ,Us. The block energy (l2-norm) was used for
the classification, and each class could contain blocks from
any subband.

The subband samples corresponding to the low-energy
class 1 were set to zero, i.e., r; = 0. Then the samples be-
longing to each of the 4 higher energy classes were mapped
to a pulse amplitude modulation (PAM) signal set by the
mappings ¥,,, m = 2,3, --- , 5, constructed either as a com-
bination of vector quantization and index assignment or as
a direct linear mapping [7]. Samples in classes 2, 3, and
4 were applied to vector quantizers and the corresponding
indices assigned to a point in a 81-PAM signal set, using the
following number of channel symbols per pixel: r, = 1/4,
ra = 1/2, and ry = 1/2. Class 5 samples were left un-
quantized and mapped linearly one-by-one to continuous
amplitude PAM symbols, i.e., rs = 1.

If there is an error in the block classification table in the
receiver, the synchronization in the decoder may be lost, re-
sulting in a break-down of the decoded image quality. Con-
sequently, the block classification table was error protected
with a Reed-Solomon (RS) [8] channel code and sent as side
information.

At the receiver side, a maximum likelihood (ML) demod-
ulator was used, and the image signal was reconstructed
through inverse operations as compared to the encoder side:
First, the block classification table was decoded and used
to select the correct inverse index assignment function and
vector quantizer pair for each block of samples. Then, the
reconstructed subband image was applied to the synthesis
filter bank, obtaining the reconstructed image.

38.1.1. Block Classification

A slightly modified version of the power and bandwidth
allocation algorithm proposed in Section 2.1. was used for
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Figure 3. Estimated OPTA for separate coding

and transmission of each class assuming memory-
less GGD classes and an AWGN channel. r = 0.125
channel symbols per pixel.

block classification.

Consider classification of J blocks into M classes (J >
M), given a mapping, ¥, and a fixed prescribed rate,
rm, for each class m, m = 1,2,..- ,M. First, we com-
pute the variance-normalized operational distortion-power-
bandwidth curves, D.,(Sm,rm), for all classes, assuming
memoryless Laplacian source models. Hence, the distortion
for codmg block j with the mappmg of class m is estimated
by 62 Dyu(Sm,rm), where 62, j € J = {1,2,--+ ,J}, is the
block energy.

Then the following algorithm can be applied for power-
and bandwidth allocation [7]: Initially, all blocks belong to
class 1. Then the blocks are allocated rate using the class-
wise operational distortion-power-bandwidth curves for a
fixed channel power, S, = S m = 1,2,... ,M. Finally,
power is allocated among the classes, starting with a zero
power allocation for all M = 5 classes, and iteratively allo-
cating power to the class giving the largest relative distor-
tion decrease.

3.2. OPTA for transmission of M =5 classes

Using M = 5 classes and a GGD model for each class, the
power- and bandwidth were optimally allocated using the
algorithm presented previously, yielding the estimates of
OPTA shown in Figure 3. The classification procedure was
optimized for SN = 40 dB for the mapping configuration
used in the practical image coder, and then used for every
other CSNR. Note that the side information is not included
in Figure 3. The maximum side information, which must be
error-protected in a practical system, is (log, 5)/64 = 0.036
bits per pixel.

By comparing Figure 2 (using 64 classes as the 64 sub-
bands) to Figure 3 (using 5 classes drawn from the 64 sub-
bands) it is evident that the three images offer a classifica-
tion gain ranging from less than 0.5 dB for the “goldhill”
image, to 1.0 to 1.5 dB for the images “Lenna” and “Bar-
bara.”

4. SIMULATION RESULTS

The PSNR performance of the proposed coder for a selected
set of channel symbol rates per pixel is displayed in Figure 4.
The classification procedure was optimized for S/N = 40
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Figure 4. Simulation results for the proposed coder.
Image: “Lenna.”

dB. At r = 0.125 channel symbols per pixel, the PSNR
performance of the proposed coder is approximately 4 dB
below OPTA (cf. Figure 3) at high CSNRs, increasing to
8 dB at low CSNRs. The larger deviation at low rates is
partly due to the optimization of the coder for high CSNRs.

4.1. Comparisons to other work

Other schemes for robust image coding have been presented
by Mohdyusof and Fischer [9], Hung and Meng [10], Tan-
abe and Farvardin [11}, Ruf and Filip [12], and Chen and
Fischer [13]. All these schemes report PSNR results as a
function of the bit error rate (BER} for transmission over
a binary symmetric channel (BSC) at a coding rate of 0.5
bits per pixel.

To compare the PSNR performance of the proposed coder
to the other coders for image transmission over an AWGN
channel, an appropriate channel symbol rate has to be cho-
sen, for which the CSNR corresponding to a certain BER
can be computed.

We assume PAM signaling with equiprobable channel
symbols and Gray coding of the indices in the modulation
signal set. Thus, for coding at R bits per pixel, a signaling
scheme offering R/r bits per channel symbol is required to
attain a symbol rate of r channel symbols per pixel. Thus,
for PA/M signaling the size of the modulation signal set must
be 287/7,

As an example, the performance of the proposed coder at
r = 0.125 channel symbols per pixel was compared to the
performance of the other coders assuming 16-PAM signal-
ing. Comparisons of the PSNR performance as a function of
the CSNR for the image “Lenna” are displayed in Figure 5.
Note that the coding results in [12] and [13] are obtained
by coders optimized for each CSNR, while the proposed
coder and the coders in [9], [10], and [11] are optimized for
a target CSNR and applied to the CSNRs of interest.

At a CSNR of 24.07 dB the channel capacity of an AWGN
channel equals 4 bits per sample. Thus, ideally, subband
coding at 0.5 bits per pixel, optimized for error-free trans-
mission conditions, could operate down to this CSNR using
r = 0.125 channel symbols per pixel.
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