ADAPTIVE RANK FILTERING BASED ON ERROR MINIMIZATION

Bert de Vries

David Sarnoff Research Center
CNS5300, Princeton, NJ 08543-5300
bdevries @sarnoff.com

ABSTRACT

A method for adaptive (on-line) pruning and constructing a
(layered) computational network is introduced. The dimen-
sions of the network are updated for every new available
sample, which makes this technique highly suitable for
tracking nonstationary sources. This method extends work
on predictive least squares by Rissanen [1] and Wax [2] to
an adaptive updating scheme. The algorithm is demon-
strated by an application to adaptive prediction of exchange
rates.

1. INTRODUCTION

For modeling of nonstationary signals, it is not appropriate
to fix the model parameters after training on a “representa-
tive” data set. Here we present a technique which adap-
tively tracks the model dimensions. For ordered data such
as a time series, Rissanen developed the Predictive Least
Squares (PLS) framework, which extends the ordinary least
squares criterion by including the estimation of the model
order {1]. The PLS criterion makes no assumptions about
the statistics of data or model nor does the result rely on
asymptotically large datasets. These features make the PLS
criterion highly suited for order tracking in non-stationary
time-series such as speech or financial rates. Our work
extends the PLS framework to adaptive updating and non-
linear models such as neural networks.

2. PREDICTIVE LEAST SQUARES

Assume we have a time series {y(1), y(2), ..., y(n)} for
which we want to construct a linear autoregressive model
T

() = w'x,, where w' = [w(1),w(2), ..., w(p)]
and x, = [y(z-1), ...,y(t—p)]T . The least-squares
approach dictates to minimize
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with respect to w. We write the resulting least-squares esti-
n ™\l n .
mate w, = (Et - ly_cty_ct) Zt - [ XY(1)  with
subscript n to indicate that we used information up to time
step n in order to estimate w. The least-squares residual

2
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increasing order p. Hence, the standard least-squares
method does not estimate an appropriate model order p.
Many extended approaches which include order estimation
exist. For instance, information-based criteria minimize
instead

_nxt) will not increase for

logcsn2 + cn/n 2)
where ¢, = 2p identifies Akaike’s Information Criterion
(AIC) and ¢, = plogn reduces to a form of the Minimum

Description Length (MDL) principle (see e.g. [3] and refer-
ences therein). The derivation of these criteria rely on
asymptotically large n and certain assumptions about the
Gaussianity of data or model. Hence, for many real-world
processes, characterized by non-stationary (effectively
small n) and non-Gaussian data (e.g. speech, biomedical
and economic data), these criteria perform worse than
desired.

For ordered data such as a time series, Rissanen [1] pro-
posed to minimize instead
2 2
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where w, _, is now the least-squares estimate based on

{3(i),iSt-1} . The residuals e(r) = y(1)—w|_,x, are

sometimes called “honest” or “true” prediction errors to
emphasize that only information from the past is used at

T
any time. This in contrast to the residuals y(t) - W, X,

which have used information from both the past and future.
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Minimization of (3) is called the Predictive Least Squares
(PLS) method. The PLS criterion, in contrast to standard
LS, does include order estimation as it minimizes for the
order that worked best in the past. The optimal order is

determined by Pprs = argminp(snz). In fact, it can be

shown that PLS delivers an asymptotically consistent esti-
mate of model order. An important feature of PLS is that
there is no large data record assumption and hence the cri-
terion is very attractive for small data sets and non-station-
ary signals. In this paper we report work on extending the
PLS principle to track the order in a non-stationary envi-
ronment and to non-linear computational (neural) net-
works.

3. PREDICTIVE ADAPTIVE RANK
FILTERING

Consider the linear filter given by
T
¥ =w_yx =3 we-Dxo. @
If we define a quadratic cost function

£(t) = Ae(t—1)+eX(t) , )
where e(t) = z(t) — y(t) are “true” prediction errors, z(t)
is a target signal, and A a forgetting factor (0<A<1);
then it is easy to derive the error gradient de(r)/dw ,

which can be used for on-line adaptation of the weights.
We would like to derive a similar gradient for the filter
length p, but this is not possible since p is an integer. How-
ever, we can use a local search algorithm which updates the
filter length to track minimal “true” prediction cost.

Let us first treat the case where x(t) = x(t-i+1), a

transversal filter. We will call the optimal filter length r(z)
the rank of the filter. If we make the reasonable assumption
that the rank of the model does not change faster than one
dimension per time step, it is sufficient to keep track of the

“true” prediction cost traces € A8 (subscript indicates filter

order) for filter lengths r(z)-1, r(t), and r(z)+1 .

Hence, the total filter length p(?) is always one tap larger

than the rank. The number of taps is then updated to the
value that minimizes the prediction cost trace:

r(t+1) = argmin [€ ()] , 6)

where r is taken over the range r(¢)-1<r<r(t)+1 .If

r(t+1) = r(t)+1 , we update the new filter Iength

p(t) =r(t+1)+1, and add a new weight

W+ 1)(t+ 1) = 0 to the weight vector. Also, we ini-
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tialize €pia ) = Epraty— 1D - If

r(t+1) = r(t)—1 , the filter length is reduced by one
tap.

The just described strategy is simple and would possibly
work well, but it can be improved at little extra cost. First,
we have ignored that the common weights for optimally
adapted transversal filters of different lengths have only the
same values if the tap signals are mutually uncorrelated.
On-line decorrelation of the tap signals can be achieved by
using lattice filters rather than tapped delay lines. The
Least-Squares Lattice (LSL) predictor was used to effi-
ciently compute PLS by Wax ([2], although no rank track-
ing was treated here). The Gradient Adaptive Lattice (GAL)
is computationally simpler than the LSL filter and performs
on par in tracking a non-stationary signal [4]. It can be
shown that the backward prediction errors in the GAL filter
are mutually uncorrelated and are therefore highly suited as
filter taps for the just described on-line rank adaptation
method. Of course, a LSL filter (which enjoys faster initial
convergence than a GAL filter) can be used as well.

Adaptive filters are prone to gradient measurement errors
as well as “lag noise” due to shifting of the optimal weights
in a non-stationary environment. The amount of excess
mean squared error relative to the optimal residual is called
misadjustment (e.g. Haykin, [4] p.708). As a result, the pre-

diction cost traces g,(t) are stochastic (noisy) signals and

the adaptive rank algorithm (6) randomly shifts rank in pro-
portional amount to the filter misadjustment. In other
words, algorithm (6) transports the filter misadjustment to a
rank noise or rank misadjustment. An improved adaptive
rank algorithm would “guard” the rank adaptation against
such misadjustment by making it harder to change ranks (if
not from a physical viewpoint, then certainly from a com-
putational cost viewpoint we like to minimize changing
ranks due to noise). Thus, for a non-stationary environ-
ment, we only switch rank if

€1y +1() <&,H(DI1-8] , M

where & is a small “guarding” threshold, which should be
proportional to the misadjustment. Since the estimation
formulae for adaptive filter misadjustment are rather com-
plex (Haykin [4], ch.16), it may be best to estimate the mis-
adjustment from monitoring the variance of € (1) or set )

to a fixed value.

In analogy with the PLS method, we “predict” the rank
based on what worked best for the past, and hence we will
call this method Predictive Adaptive Rank (PAR) filtering.
As an example, a GAL-PAR predictor implementation fol-
lows in Figure 1.
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for t=1,2,....n
% UPDATE GAL PREDICTOR
for i=1,2,...,{t)+1 % go one beyond optimal order
fi) = fi_ 1@ +v(0O)b; _(t-1) % forw. PE
b(t) = b;_1(t—-1)+7,(t)f;_,(t) % backw. PE

Yi(t+1) = v, () —nfi)b;_ (t-1) % refl coeff.

g(1) = Ag,(t- 1)+fi2(t) % pred. cost trace
end%for i
% NOW PRED. RANK ADAPTATION
if &, ,1(1) <g,(,(1)[1-3] then
r(t+1) = r(t) +1 % increase rank
Yre+1)+1(1) = 0 % add new weight

e+ 1)+ 1(8) = €4 1y(t) % init pred. cost

elseif €y~ 1(8) <&,(,(D[1-8] then

r(t

r(t+1) = r(t)~1 % decrease rank

else, r(t+1) = r(r) % no rank change
end%if
end%for ¢

Figure 1. pseudo-code for Gradient Adaptive
Lattice--Predictive Adaptive Rank (GAL-PAR)
predictor.

4. PREDICTIVE ADAPTIVE RANK
ARRAY FILTERING

For array filtering problems or in multilayer networks, lay-
ers do not consist of time-shifted data only. In order to
apply the adaptive rank algorithm, we need to additionally
compute an ordering among the taps (nodes in neural net

jargon) of x, in order to decide when and which nodes to

add or prune. Moreover, for added performance, it is bene-
ficial to decorrelate the tap signals on-line. In a linear array
filtering context, Yang et al. [5] proposed an adaptive Prin-
cipal Components Analysis (PCA) algorithm followed by an
MDL complexity measure of type (2) to track the rank.
Adaptive principal components algorithms recursively
update the eigenvectors and eigenvalues of the auto-corre-

lation matrix of a multi-dimensional signal u ‘ The matrix

of eigenvectors V, can be used to decorrelate u, by

t

‘ T .
x = Vt u,, where the elements in x, are ordered along

decreasing eigenvalues. The PCA-PAR algorithm, then,
follows by predictive adaptive rank updating on x, . A large

number of PCA tracking algorithms have been presented in
various literatures. In our simulations we used the PASTd
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algorithm, a deflation algorithm which extracts the princi-
pal components sequentially (Yang et al., [5]).

There are a number of very attractive properties of the
PCA-PAR algorithm relative to alternative methods for on-
line construction and pruning of networks. In particular, we
mention:

* The PCA-PAR algorithm smoothly constructs and prunes
within the same framework. Many alternative on-line struc-
turing algorithms such as the Resource Allocating Network
(Platt, 1991) are restricted to network construction and can-
not track downsizing of the model [6].

» The transformation of the input to its principal compo-
nents space leads to the applicability of the self-orthogonal-
izing adaptive filtering algorithm for the weight matrix

-1

(w, = w, 4 '”]Dt xe. where D, is the diagonal matrix

t

of eigenvalues), which converges much faster than regular
LMS or backpropagation-like updating [4].

¢ Furthermore, PAR algorithms, in contrast to algorithms
that add complexity terms to the network cost, directly
minimize the network cost, which is (for properly defined
cost function) the ultimate goal of the computation.

As a computationally cheaper alternative to PCA tracking,
we could use triangular matrices based on QR-decomposi-

tion to decorrelate u, . This road leads to algorithms such as

Gram-Schmidt-PAR or Givens rotation followed by PAR.
In general, in order to apply PAR, X, needs to be ordered

by some criterion and is preferably mutually uncorrelated.

5. APPLICATION TO FOREIGN
EXCHANGE RATE PREDICTION

The PAR algorithm can be applied to various adaptive fil-
tering protocols such as identification, inverse modeling,
prediction, and interference canceling. We present here an
application to adaptive Non-linear AutoRegressive (NAR)
prediction of a non-stationary signal.

Consider the network shown in Figure 2.A, which aims to

predict the time series z(¢t) from its own past
x, = [z(z=-1),2z(t-2), ..., z(t—p)]T‘ The network sepa-

rates the prediction problem into a linear part (by w) and a
non-linear prediction task (by v). The linear part is esti-

mated by el(t) = z(t)—»gtT_ 1% and LMS adaptation

w, =W, +n;_ctel(t). The residual e,(?) is due to mis-
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alignment of the adaptation algorithm, noise and nonlinear
dependencies. The nonlinear part in e,(f) is subsequently

estimated by a high dimensional Random Representation
(RR) network: the p-dimensional input signal x, is trans-

formed by the nonlinear map y . = O'(A)_ct) where A is a

constant random mxp weight matrix (m>p) and 6( ) a
scalar nonlinear function. Next, the total prediction error

e(t) is estimated by e(t)=el(t)—yf_lzt and

v, =y, 1 X,e(t) . Note that both the linear weights w
as well as the weights v corresponding to the non-linear map
can be updated by LMS without backpropagation, thus per-
mitting fast tracking of non-stationarities (see Sutton [7], for
a further discussion of the RR network). We compare the
performance of this network to the case where PCA-PAR is

applied to Yy the outputs of the nonlinear layer.

A)
z(t)

# adapt rank

C

————> # pruned modes

_———> sample #

[4] 100 200 300 400 500 600 700 800 900 1000

Figure 2. A) Network with PAR filtering in non-
stationary time series prediction context. (B) The
rank of pruned eigenspace for the nonlinear
layer as a function of sample number for non-
linear AR prediction of SFR/USD exchange
rates.
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“

This network configuration was applied to the problem of
foreign exchange rate prediction. We selected 1,000 tick-
by-tick samples (about one day) from May 1985 of the U.S.
dollar versus Swiss Franc exchange rate. We used 40 ‘tanh’
hidden nodes, LMS weight updating with constant learning
rates =0.01, and forgetting factor A=0.98. The adaptive
network without rank adaptation correctly predicted 57%
of the directions sign(z(t) -z(t—1)) . When PCA-PAR
was added to the outputs of the non-linear layer, 72% of the
direction of movements was correctly predicted. In Figure
2.B the rank of the pruned eigenspace (40-r(¢)) versus sam-
ple number is shown. Note that PAR filtering serves both as
an on-line construction and pruning algorithm. Also, the
number of actually used nodes in eigenspace is much
smaller than the number of pruned nodes (an average of
about 10 out of 40). Since we use a deflation technique for
PCA updating we only track the modes (plus one) that are
used in the computation of the output. Clearly, this leads to
tremendous savings over a symmetric PCA tracking algo-
rithm.

CONCLUSIONS

An adaptive rank updating algorithm based on the princi-
ples of predictive least-squares was presented. This method
can be applied both to time-shifted data vectors and multi-
channel filtering problems. In a neural network context, the
proposed algorithm can be identified as an on-line pruning
and construction algorithm.
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