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Abstract

In many neural network applications to signal process-
ing, the back propagation (BP) algorithm is used for
the training process [4, 6]. Recently, several authors
(e.g. [1, 2, 5]) have analyzed the behavior of the BP
algorithm and studied its properties.

The influence of the number of layers on the perfor-
mance and convergence behavior of the BP algorithm
remains, however, not well known. The paper tries to
investigate this problem by studying a simplified multi-
layer neural network used for adaptive filtering, The
analysis is based upon the derivation of recursions for
the mean weight update which can be used to predict
the weights and mean squared error over time. The
paper shows also the effects of the algorithm step size
and the initial weight values upon the algorithm be-
havior. Computer simulations display good agreement
between the actual behavior and the predictions of the
theoretical model. The properties of the BP algorithm
are illustrated through several simulation examples and
compared to the classical LMS algorithm (3.

1. INTRODUCTION

The neural structure studied in this paper is presented
in figure 1. It is composed of L layers, each layer has a
single scalar neuron.
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Figure 1: An order 1 multi-layer adaptive filter.
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The network input is a scalar signal z (n), its output
is then:

L
y(m) =[] s ()= (m),
k=1

which is equivalent to an order 1 filtering (multiplica-
L
tion by a scalar h (n) with h(n) = [] hk (n)).
k=1

The weights are updated using t=he BP algorithm,
which minimizes the error e (n) between the reference
d(n) and the output y (n), as:

9e? (n)

hg (n+1) = hg (n) _l‘l‘ahk(n)’

k=1,.,L.

Which can be written as:

=1, 5k

L
hi (n+1) = b (n) + 2pe (n) ( IT & (n)) z(n)

In order to simplify the statistical analysis of the al-
gorithm, we suppose that all the neurons are initial-
ized with the same positive value at time n = 0 :
h1(0) = ... = hg (0) > 0. We suppose also that
is positive. It can be easily seen that: h; (n) = h; (n)
for all i and j. The updating equations become then:

hie (n+1) = hi (n) (1 + 2pe (n) z () by ™2 (n) .
The global coefficient h is then updated as:
- L
h(n+1) = h(n) (1+2ue () (@) AT (n) .
2. MEAN WEIGHT BEHAVIOR
2.1. THEORY

We define a logarithmic weight error (between the cur-
rent filter coefficient h (n) and the optimal one hop [3])
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as: v(n) =In(h(n) /hopt) . v (n) has then the following
recursion:

v(n+1)=v(n)+Lln (1 + 2ue (n) z (n) K*T* (n)) :

Under some assumptions (which will be detailed in the
final paper), we have:

v(n+l) = v(n)+2ul{emp: (n)+

hopt (1 ~ exp (v (n))) 7 ()2 (n) BT, €=

Let m(n) = E(v(n)), it can be demonstrated that :

m(n+1) =m(n) + fexp (am(n)) {1 —exp(m (n)z})
1
where a =1— £ et = 2uLh} rx.

In [5) we have proposed a second order approxima-
tion of equation 1 (on the variable m (n)). The mean
weight evolution have been modelled by the following
2nd order recursion: m(n+1) = am(n) + bm? (n),

where g = 1—2uLh‘1,;,Lt°‘rX, andb=2u(4—3L) hzlu-:-tarx .

This model is simple and gives a direct and explicit
interpretation of the algorithm behavior. Experimen-
tally, it does not present a significant difference with
equation 1. The non linear term bm? (n) controls the
weights evolution at the beginning of the learning pro-
cess (if the initialization is far from the optimum, i.e.
|m (0)] <« m?(0)). Because of this quadratic term, we
can not deal with a time constant for L > 1. This is
the main difference with LMS. The linear term, am (n}),
governs the evolution of the weights at the end of the
learning process (or during the whole process if it is
initialized near the optimum).

In this paper we use the analytical model given by
equation 1. The evolution of m (n) is then governed by
a non linear equation: m(n+1) = f(m(n)), where
f(z) =z + Bexp (az) {1 —exp(z)}.

2.2. SIMULATIONS

In the simulations below we apply the network to a
system identification problem. The input signal z (n)
is a white gaussian noise (02 = 1). The reference is:
d(n) = hgz(n) + b(n), where b is a gaussian noise
(02 = 0.04). The adaptive filter is used in order to
identify the unknown scalar filter hy (note that hop =
ha).

In the following, we compare the theoretical model
for the evolution of m (n) (equation 1) and Monte Carlo
simulations for different values of L, p, hopt, and h(0).
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Figure 2: Evolution of E (v(n)), L =3.
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Figure 3: Evolution of E (v(n)), L = 10.

3. STABILITY CONDITIONS

The stability conditions can be determined by studying
lipschitz conditions of the function [7]:

f(z) =z + Bexp(oz) (1 - exp(z)).

It was demonstrated (7] that a necessary convergence
condition (regards p) is:
1

OSMSﬂmam=_—?:%— (2)
Lh‘opt Ty

The study of f determines explicitly the influence of the
initial weight values on the algorithm behavior. Figure
4 presents the functions fr, (z), the parameters py, were
chosen such that the steady state MSE are the same for
all layers.
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Figure 4: f1, (z).
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In this paper we will give some experimental results
that illustrate the algorithm behavior. The following
figures use the same identification model as above, with
02 = 0.04, hopt = 1.5. The case L = 3 is studied
(we did also comparisons with LMS initialized with 0,
the learning rates ppps and p3 have been taken such
that we have the same steady state MSE for both algo-
rithms). The figures show that the algorithm (L = 3) is
slow for initializations smaller than the optimum. The
comparison with LMS (initialized at 0) show that the
latter is faster even if the neural net is initialized near
the optimum hep; (e.g. h(0) = 0.1,0.25, and 0.5). On
the other hand, the neural net is faster for the initializ-
ing values which are greater than h.y: (e.g. h(0) = 4).
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Figure 5: Evolution of E (h(n)), for different h (0),
L = 3, and comparison with LMS.
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Figure 6: Corresponding MSE’s.

We will now see what happens when % (0) is very
high. In the simulation below we took h (0) = 20, L =
3 and hop: = 1.5. The algorithm will rapidly go (in
average) to values smaller than h,p;, than it converges
slowly to hope. In this cas, the neural net is slower than
LMS (initialized with 0). The behavior of function f
confirms these experimental results.
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Figure 7: Case where h (0) > 1.
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Figure 8: Case where h (0) > 1, zoom.
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Figure 9: MSE, case where h (0) > hopt, comparison
with LMS, hpas (0) =0.

4. STEADY STATE MSE

The SSMSE is expressed as:
Emin

2(1 :
1— Lk Py

Ep= (3)

Note that for LMS (L = 1), the SSMSE is:

- Emin
1—prx’

Ep
The figure below compares the theoretical expression 3
and the estimated error for L = 2.
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Figure 10: MSE (u), L = 2.
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5. INFLUENCE OF THE NUMBER OF
LAYERS

5.1. ON THE STEADY STATE MSE

It is interesting to study the function Eg (L) in order
to see how the MSE behaves. We have:
dEg (L)
dL
This means that Egr (L) has a unique minimum (at
Lo > 1) when hgp < e¥ . Whereas if hopt > e:!l,

the minimum Lg is smaller than 1. Figures 11 and 12
illustrate the effect of L on the MSE.
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Figure 11: Eg (L), case hopt > eT.
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Figure 12: Eg (L) ,case hopt < eT.

5.2. ON THE TRANSIENT BEHAVIOR

The figures below compare the BP algorithm transient
behavior to that of LMS. The step sizes u (L) were
taken such that the steady state MSE is the same for
all networks (i.e. Eg (L) = Ey fixed). It is shown that
all the networks (initialized at h (0) = 4) are faster than
LMS (for hrms (0) =4 and hLMS (0) = 0).
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Figure 13: Influence of the number of layers on the
transient behavior.
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Figure 14: Corrensponding MSE’s.

6. CONCLUSION

The paper studied the behavior of the backpropaga-
tion algorithm in the framework of linear adaptive fil-
tering. We proposed a mathematical model to predict
the mean weight evolution during the learning process.
This model allowed to explicitly show the influence of
the number of layers on the backpropagation behavior.
Several simulation results were presented, they confirm
our theoretical analysis and interpretation.
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