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ABSTRACT

An adaptive on-line learning method is presented to facil-
iate pattern classification using active sampling to identify
optimal decision boundary for a stochastic oracle with mini-
mum number of training samples. The strategy of sampling
at the current estimate of the decision boundary is shown
to be optimal in the sense that the probability of conver-
gence toward the true decision boundary at each step is
maximized, offering theoretical justification on the popu-
lar strategy of category boundary sampling used by many
query learning algorithms. Analysis of convergence in dis-
tribution is formulated using the Markov chain model.

1. INTRODUCTION

Pattern recognition via active sampling can trace its roots
to statistical experiment design where performing an exper-
iment (acquiring one training sample) may incur significant
cost.
A number of active learning strategies, based on the
concept of optimal experiment design, as well as importance
sampling have been reported ([1, 2, 3, 4, 5, 6]). References
[1] and [2] focused on active learning for pattern classifi-
cation applications, with a common heuristic to sample at
or near the present estimate of the category boundary us-
ing a justification that the function approximation of the
posterior probability is most uncertain near the category
boundary.

In this paper, we examine the validity of this argument
using a two-class pattern classification problem as an exam-
ple. We show that the variance of the approximation error
reaches its maximum at the true category boundary.

Based on a stochastic oracle model, we show that the
strategy of sampling at the present estimate of category
boundary is optimal by using a perceptron-like learning al-
gorithm. This result offers a direct theoretical justification
of the “sample-at-current-boundary” strategy.

Convergence toward the true decision boundary is an-
alyzed using the Markov chain model to prove the conver-
gence in distribution.
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2. PROBLEM FORMULATION

In a two-class pattern recognition problem, the feature vec-
tor z € R and the class label C € {0,1} are random vari-
ables with conditional probability density function f,c(z |
C =1i) = fi(z), and prior probability P(C = i) = n;, where
i = {0,1}. We also denote the posterior probability that
C=igivenzis

oy . _ i fi(z) .

gi(z) =P{C=i|z} rofo@ + 1. @) i=0,1
Since go(z) = 1—q1(z), for simplicity, we shall denote g1(z)
by g(z) in the rest of this paper.

The set of points B = {z | go(z) = qu(z) = 1/2} is
called the decision boundary. In general, B may contain
more than one point. In this work, we are mainly interested
in applications where B contains exactly one point. This
will be the case if, say, we are doing fine-tuning of a local
decision boundary.

In an active learning (also known as guery learning, [7])
problem formulation, the set of training samples are not
given. Instead, a “learner” (the classification algorithm)
will sample a feature vector z and present to an oracle (by
performing an experiment or running a simulation) to learn
the corresponding class label of z. In a two-class pattern
recognition problem, this is equivalent to the evaluation of a
function y(z) at a specific value of z. The oracle will return
y(z) = 1 or y(z) = 0 as the class label associated with z
according to the posterior probability P{C =1 | z} = ¢(z)
and P{C =0]z} =1—q(z).

For z >» w* (w* is unknown to the learner) g(z) — 1
and the oracle will most likely return y(z) = 1, while for
z € w*, it will most likely return y(z) = 0. For z = w*, it is
equally likely for the oracle to return y(z) = 0 or y(z) = 1.

3. MINIMUM ERROR ACTIVE LEARNING

To devise a learning rule that learns the optimal decision
boundary w® using active learning, let us define a 0-1 loss
function L(y(z), f(w,2)) = [y(z) - f(w, )] = [y(z) —u(z—
w))?, where u(z) =1 if £ > 0 and u(z) = 0 if z < 0. That
is, if f(w,z) and y(z) have the same value for a given x,
then the loss is 0. Otherwise, the loss is 1. Then, a cost
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Figure 1: Two-class problem, ¢(z) = P{C =1 | z}

function as the conditional risk gi;/en x can be defined as:

Cost(z) = Elly(z)— f(w, )]’ | 2]
= Ply(z) =1z} [l —u(z - w)]’
+P{y(z) = 0| z} - [0 — u(z - w)’
= q(z)-1 —u(z —w)]+ (1 - ¢(2)) - vz - w)
{l—q(x) z>w (1)
q(z) z<w

Since Cost(z) is not differentiable with respect to the
decision boundary w, we use an adaptive formula similar to
that of the classical perceptron learning algorithm:

Wnt1 = wa — [e(y(zn) — 0.5)] @)

where ¢ is the learning rate, a.k.a. step size, and the new
estimate of the boundary moves to the left or right by ¢/2
depending on the sample output y(z.) at the next sampling
of z,. Note that E[y(w*)] = 0.5.

From (2),

* * €
lwns1 —w"| = [wn —w' £ 5. ®3)

The algorithm will move toward convergence in the present
step if |{wny1 — w*| = |wn —w*| — 5.

Let

P. = P{lwnp - 0'| = lwa — "]+ S Jwa}  (4)

be the probability of error of moving away from the true
boundary, in the one-step move described in (2).

Theorem 1 The new sample £, which minimizes the maz-

imum possible value of P. over each possible wn, 1 T, = wp.
Moreover, if x, = w,, then

P. <05 (5)
Proof 1 From (4),

P

* * €
P{lwn+1 —w'| = lwn —w’| + 5 | wn}

P{y(zn) =0 | wn > w'} - P{wn > w*}
+P{y(zn) =1 | wn < w'}- P{wn <w*} (6)
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The event y(z.) = 0 given z. and the event wn, > w*
are independent, hence

P{y(za) =0]wa >w'} = P{y(zns) =0}
= 1-q(zn) ™

Ply(zn) =1|w. <w'} = P{y(z.) =1}
q(zn) (8)

Thus (6) becomes
P. = (1-q(zs)) - P{wn > w'} + q(za) P{wn < w’} (9)

If wp, > w*, to minimize F., one would want to mini-
mize the term 1 — q(zn) by choosing = where q(z,) is as
large as possible, i.e., where zn, 1s as large as possible. Con-
versely, if wn, < w*, one would choose z, such that z, is
as small as possible.

Since we have no knowledge on P{wn, > w*} or P{w, <
w*}, we opt to use the min-maz criterion to minimize the
mazimum probability value of P. regardless of whether w, >
w* or w, < w.

In particular, we note that when w, < w*, choosing
Tn < wp will run into the risk of zn < w*, which implies
P. =1—q(z.) > 0.5. Only for . > wy is it guaranteed
that P. < 0.5. Similarly, when w, < w*, only for z, < w,
does it guarantee that P, < 0.5.

Taking the intersection of the two sets, {zn > wn} and
{zn < wn}, one concludes that . = wn is the only solution
which guaraniees that P. < 0.5. Thus (5) is proved.

This theorem establishes that, with a min-max crite-
ria, the optimal active learning strategy for the two-class
pattern classification problem is to sample at the current
estimate of the category boundary w,. Thus (2) becomes

Wnt1 = wWn — [e(y(wn) — 0-5)] (10)

4. CONVERGENCE ANALYSIS

In this section we show that the learning algorithm (10)
converges in distribution toward the true boundary w* us-
ing a Markov chain model.

Given an initial condition wp, if ¢ is constant, then the
set of random variables {wn} in (10) constitute a Markov
chain, :

w(k) = wo + k% (11)

where k is any integer, and w(k) denotes the boundary es-
timate w, which falls in the state k of the Markov chain.
We also define the state k* to be the state closest to w*.

Given w, = w(k), the output of the sampled value
y(wy,) dictates the state transition probability from state
k to the next state k', w,+1 = w(k’). In particular,

Plwnyr = w(k) | wa = w(k)} =
Ply(wa) =1 wn = w(k)} = q(w(k))
if ¥=k-1

P{y(wa) =0 | w, = w(k)} =1 — g(w(k)) (12)
if K=k+1,

0
if K —k|#1.
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Since we are fine-tuning local boundary within a region
as noted in section 2, the state space have bounds, thus it
is considered to have finite number of states, kr < k < kv,
where ki and ky are the lower and upper bounds, respec-
tively.

Let T'(¢ | §) be the notation for the transition probability
from state j to i, i.e.,

T(i|j) =

Also define T (i | 5) as the transition probability of mov-
ing from state j to i in n steps. By induction, it can be
shown that

T+ | §) = ZT(m)(k | TG | k) (13)

Plwnsr = w(j) | wa = w(d)}.

Lemma 1 Given a state ¢, the transition probability for the
nezt state j =i+ 1 satisfies
TG4 >05  Jw(y) —w'| < |w() - v (19)

TG4 <05  |jw() —w'|> jw(i) — v’ (15)

Proof 2 From (11), we note that
w(i+1) > w(i) > w(i—1).

When w(i) > w*, then w(i+1)—w" > w(i)—w* > w(i—
1)—w" > 0 and |w(i+1)—w*| > |w(é)—w*| > |w(i—-1)—w"|.
From (12), and since g(w(z)) > g{w*) = 0.5,

TiE+1]t)=1-q(w()) <1—g(w')=05,

then
T(i—-1]|i)=1-T(#+1]%) > 05
When w(i) < w*, then w(i—1)—w* < w(i)—w* < w(i+
1)—w* <0, so jw(i-1)—w*| > jw(i)—w’} > |w(i+1)-w®|.
from (12), and since g(w(3)) < g(w™) = 0.5,
T(i—1]1) = q(w(i)) < g(w") = 0.5,
then
TE+1]i)=1—-T(~—-1]4)>05
This proves that the transition probability toward the

true boundary is always greater than 0.5, and the probability
away from the boundary is always less than 0.5.

Definition 1 A set of states A is closed if

T(A|k)=1 Vke A

Definition 2 A chain is indecomposable, if there 1is no two
or more disjoint subset of states that are closed.

Lemma 2 For an indecomposable finite-state Markov chain
with transition probabilities such that there is non-zero prob-
ability of reaching any state, then for any set of states A
there is one solution T(A) for all starting states ko that

lim T™(k | ko) = T(k) Vke€ A
n—o00
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This Markov chain is called regular or stable. Full de-
scription of Markov chain and its convergence proof may be
referred in (8, 9.

Theorem 2 The learning method (10) with constant € and
bounded region converges toward an asymptotic probability.

Proof 3 We only have to prove that (11) constitutes a reg-
ular Markov chain.

A transition moving toward w* is possible for all states.
This can be shown by noting that one possible path from a
state k to a state k* defined to be closest to the true bound-
ary w* is to always move toward state k* without moving
away, and the probability is

Hk +lT(z 1]¢) whenk>k* (16)
Hk JTGE+1]6) whenk <k

which is > 0, from (14).

This chain s indecomposable. This is proven by noting
that any state can reach w*, which are then part of the
subset of states which includes w*. If there were to exist
a state that is not an element of that subset, it can never
reach w*, contradicting the above statement.

Clearly the learning method above satisfies the criteria
for a regular Markov chain, which proves its convergence in
distribution toward the asymptotic probability.

Lemma 3 If a Markov chain is regular, for any set of
states A the proportion of time the system spends in A goes
to the asymptotic probability T(A).

Let N, be the number of times the system spends in
state k up to time n, then using the central limit theorem,
as n — 00, P(|&2 — T(k)| < €) = 1 for every arbitrary
€ > 0 for all k, which is called the weak law of large numbers
(18, 9.

This shows an important corollary:

Corollary 1 Inn moves, as n becomes large, the state i is
reached nT' (i) times, and the transition from ¢ to j occurs
nT(j | §)T(5) times.

Theorem 3 Let woo = limp 00 Wn, then

Plws =w'} > P{lwe =w'} Vo' #w*  (17)

Proof 4 We use the Markov chain model (11) and its tran-
sition probabilities T(t | j).

First, given two states ¢ and i + 1, in n steps, if there
are m number of transitions from ¢ to i+1, then the number
of transitions from i +1 to ¢ must differ from m by at most
1. This can be proved by looking at the transitions that
cross between ¢ and i + 1. A second transition in the same
direction can only occur if a matching transition in the other
direction has already occurred.

From Corollary 1, the number of times spent in the tran-
sition between t and i + 1 approaches

aT(i+1|)TE) =nT@E|i+1)T3E+1) +a,
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where o € {—1,0,1}.
As n — oo, term a drops out, and cancelling out n and
rearranging, we get
_T(E|i+1)

T6=7a+119
Since from (14) and (15), when i > k*, T(i|i+1) > 0.5
and T(i+1|%) <05,
TG | i+1)
TG+1]9)

T(i+1) (18)

thus
T@)>T@E+1) Vi>Fk

and since t > k*,
T(k*) > T() Vi>k™

When i < k*, again from (14) and (15), T(i |1+ 1) <
0.5 and T(i+1|1) > 0.5,

T+l
TG+1]3)

thus
T(#) <T@E+1) Vi<k

and since ¢ < k”,
T@E) < T(k") Vi<k™
Combining both, we have
T(K*) > T() Vi#k".

Since T'(k*) is equivalent to P{we = w*}, this proves
(17).

The above formulation thus proves the convergence in
distribution of the “Sample-at-current-Boundary” learning
algorithms toward the true boundary point w*.

5. CONCLUSION

Active learning in a stochastic environment reflects the method

of estimating the learning model given existing samples,
then querying new samples that may optimize the estima-
tion process, and iterate this process.

It is theoretically shown that sampling near the bound-
ary is the optimal way for active learning in a stochastic
environment.

Convergence analysis is done using the Markov chain
model to prove that the method converges toward the true
decision boundary in distribution.
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