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ABSTRACT

Inverse problems have been often considered ill-posed, i.e., the
statement of the problem does not thoroughly constrain the so-
lution space. In this paper we take advantage of this lack of
information by adding informative constraints to the problem
solution using Bayesian methodology. Remote sensing problems
afford opportunities for inclusion of ground truth information,
prior probabilities, noise distributions, and other informative
constraints within a Bayesian probabilistic framework. We ap-
ply Bayesian methods to a synthetic remote sensing problem,
showing that the performance is superior to a previously pub-
lished method of iterative inversion of neural networks. In ad-
dition, we show that the addition of ground truth information,
naturally included through Bayesian modeling, provides a sig-
nificant performance improvement.

1. INTRODUCTION

Remote sensing problems are of the general class of inverse
problems, where we have a measurement vector m (e.g., mul-
tispectral active or passive microwave measurements) arising
from some physical process ¢() acting on a (geophysical) pa-
rameter vector x (e.g., temperatures, moistures, vegetation in-
dices, etc), and we wish to infer the parameter vector x from
the observed measurement vector m.

Satellite remote sensing has the additional feature that a
whole set of measurements {m}, over some region denoted by
positions {p} , are to be inverted to their resulting {x}. Fig-
ure 1 details the different quantities and information sources
available in a remote sensing problem. The parameter vector
x and the measurement vector m are related by some physi-
cal process m = ¢(x), or more commonly by m = ¢(x) + n,
where n denotes some channel or sensor noise vector from the
physical process. Remote sensing problems are especially ripe
for Bayesian methods because the x; are in general not inde-
pendent, i.e., they vary smoothly according to their positions

lThere often exist certain ground truth values for any partic-
ular problem. This ground truth information takes a couple of
distinctive forms. We have contour ground truth (cgt) when
we know the parameters xj for particular locations Pj- We

have model ground truth when we have a limited number of
data pairs of x linked to the resulting m, preferably having a
greater accuracy than that provided by the approximate ana-
lytic model ¢ of the underlying physical process is m = ¢(x).
Bayesian methodology allows meaningful and rigorous incor-
poration of each of these information sources into the inverse
problem solution.

Neural networks have been used for geophysical parameter
retrieval, and in initial work with neural networks, an explicit
inverse process was used [14, 2, 8]. To deal with the many-to-
one mapping problems, we later used an iterative constrained
inversion technique on the forward mapping, which more accu-
rately represents the functional relationship m = ¢(x) [15, 3].
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Figure 1. Information sources available in a remote_
sensing problem: contour ground truth points (cgt),
measurements m, knowledge of the physical process
m = ¢(x) + n, knowledge of the noise n, and positions

(1, p2).

In this paper, we apply Bayesian modeling to the inverse
parameter retrieval problem. A Bayesian approach was first
introduced by Besag [1] in the context of an image restoration
problem. In the Bayesian approach, the parameter retrievals
are performed by maximizing a posterior probability. The pos-
terior probability is broken down into smaller, physically mean-
ingful conditional probabilities.

In Section 2., we describe the Bayesian model for remote
sensing problems in terms of conditional probabilities that take
into account ground truth information and parameters deter-
mined at neighboring sites. The Bayesian framework allows for
a Bayesian Iterative Inversion of a neural network, shown to
have superior performance to that of iterative inversion [6, 4].
We evaluate the Bayesian Iterative Inversion method including
the use of both model and contour ground truth.

In Section 3., we compare the performance of Bayesian It-
erative Inversion technique with and without ground truth, to
the performance of Iterative Inversion and the use of an explicit
inverse. The Bayesian methods are found clearly superior, with
the incorporation of a limited number of ground truth points
significantly enhancing the performance of the Bayesian Itera-
tive Inversion method.

2. BAYESIAN ITERATIVE INVERSION

We use a mazimum a posterior (MAP) framework based on
Bayesian analysis to estimate the optimal inverse geophysical
parameters for remote sensing applications.

2.1. Derivation of the Bayesian Framework

The framework has a close relationship with previous work of
Besag on Bayesian methods applied to an image restoration
problem [1]. Let i be the index of the sites in the area of inter-
est. Let x; and m; respectively be the geophysical parameters
and measurements at the i** site. The sets {x} and {m} de-
note the parameters and measurements at the sites of interest.
Let f({x}/{m}) be the conditional probability of the set of pa-
rameters {X} given the set of measurements {m}. In Bayesian
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inversion, we want to find the {x} which maximizes the poste-

rior probability f({x}/{m}).
This may be performed iteratively if we note that by applying
a simple Bayesian analysis,

F({x}/{m}) = f(x, {xj;e.‘}lmfl {mj;ﬁ})
= -f(x"l{xj;éi}v m;, {mj;ti})f({xj;!i}'mir {mj;ﬁ}) (1)

where the second term is independent of x;, so maximization
of f(xil{x;,;},mi, {m,_;}) will always monotonically increase
f({x}|{m}). I we consider each x; as the physical cause of
each associated m;, we may write:

f(xil{x,';ﬁ}r m;, {mj¢i}) = f(xt'l{xj;ﬁ}: m;). (2)

If we let x,/; denote the set of parameter vectors associated
with the neighboring sites of the i** site, and assume a standard
Markov random field (MRF) assumption [9] that conditioned
on X,;, i.e., Xi is conditionally independent of any {x;_;} not
contained in the neighborhood set x,;;, we may conclude that

F(xil {2} mi) = f(xilxop5, mi). (3)

iFrom Eqs. (1)-(3), it follows that to maximize f({x}|{m}),
it is sufficient to iteratively select each site p;, and estimate
the parameters x; which maximige the posterior probabil-
ity f(x:jm; x,;;). The method of maximizing f({x}{m})
through iterative maximization of each f(x;|ms,x,/;) is called
iterated conditional modes (ICM) [1].

By using Bayes theorem, we convert f(xi|m;, x,;;) into a
number of smaller, physically meaningful conditional probabil-
ities:

max F(xijmi, x, )

= flmy,x,0x:) f(x:)/ f(mi, x, ) (4)
= flmlxi) f(x %) f(x:)/ f(me, x,/) (5)
o f(mulxi) f(x,apilx:) f(x:) (6)

where o denotes proportional to. Since the maximization is
with respect to x;, any terms without X; can be dropped out.

Note that we are now left with a simple maximization prob-
lem on f(x:|mi, x,/;). A vast array of search techniques may
be brought to bear, including simulated annealing, Gibbs sam-
pling, conjugate gradient, gradient descent, and gradient de-
scent with momentum. The simulations in this paper are per-
formed with gradient descent with momentum.

2.2. Construction of the Different Conditional Prob-
abilities in the Bayesian Model

The three probability distributions, the sensor noise and model
mismatch distribution f(m;|x;), the neighborhood distribution
F(x4/ i|x:), and the prior distribution f(x:), when multiplied
together, are proportional to f(x;|m;, x,;;}, and so allow us to
iteratively update the x;. Figure 2 illustrates the relationship of
the different distributions. The neural network ¢(x;) operates
within the sensor noise and model mismatch distribution.

The neighborhood distribution, f(x,/jx:), can adopt the
standard Markov random field (MRF) modeling under the
Gibbs distribution formulation [9] or by the probabilistic neural
network modeling proposed by Hwang [11]. Once a system is up
and running which reproduces terrains from measurements, the
reconstructed terrains could be used to generate these densities
through statistical density estimation [10].

In the simulations of this paper, Xx,;; is the collective set
of parameters {x;} associated with the eight neighbors whose
geographical locations {p;} are adjacent to that of the i-th
site p;, and f(X,;|xi) is modeled as a product of independent
Gaussian f (x,-|xg$, with mean gmm = X; and covariance matrix
Emm for each point x; in X, ;.

The probability f(x;) is ca.{led the prior distribution of x;.
It contains information of the a priors probability distribution
of the parameters at the site ¢. In our simulations, we model
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Figure 2. The Pieces of the Bayesian Model: the sen-
sor noise and model mismatch distribution f(m;|x;), the
neighborhood distribution f(x,;:|x:), and the prior dis-
tribution f(x;).

f(xi) as a Gaussian with mean u, and covariance X,. These
parameters of the prior, g, and ¥,, can be made to vary ac-
cording to position p, giving site dependent priors, as in [6]. In
this paper, pp and X, will be constant over all positions p.
f(ms|x;), the sensor noise and model mismatch distribution,
is the conditional probability of the measurement m; given the
parameters X;. Let ¢(x;) be the true physical process that
would give m; in the absence of sensor noise. Thus m; =
¢(x;)+n, where n denotes noise in the remote sensing process.
We approximate ¢(x;) by a simpler model used to train a

neural network, and denoted by $(x:). Thus there would be a

model mismatch error of ¢(x;) — ¢(x:) . We model the mea-
surement noise n with density f(mi;ix;, ¢(x:)) and the model

mismatch error ¢(x;)— qg(x;) with density f(¢(x:)|x, (x:)), as
independent Gaussian processes. Expanding f(malx:, $(x:)),
we find:

F(malx:, §(x:))
- / Flmalxs, Bx), (xe)) F(B(xs) 1, (xe))dd(x:) (7)

/ flmidx, $(x:)F(B(x)Ix, d(x:))db(xs).  (8)

Thus the conditional probability f(m;|x;)is a Gaussian distri-
bution on the measurement m; with a mean of the model output
cl;(x.-) and a covariance matrix X for which ¥ = T+ 2. By
and ¥, denote covariance matrices for model mismatch error,
(xi) — #(x:), and sensor error, m; — ¢(x:), respectively.

Note that it is during the maximization of each individual
f(x;lm;,x,;;) that it becomes necessary to take the gradient of
a function of ¢(x;). This is where a neural network is applied
in our algorithm.

2.3. Putting Model Ground Truth into the Bayesian
Formulation

In formulating our solution to inverse remote sensing problems,

we have yet to use model ground truth. Use of model ground

truth requires a reformulation of the senor noise and model

mismatch distribution to incorporate two different conditional

density estimates of f(mi|x;).

With the addition of model ground truth, we have two in-
formation sources available to evaluate f(m;{x:). The first is
an approximate analytic model ¢(x;), while the second is the
limited number of model ground truth points D = {(x*, m*)}.

Reformulating f(mi|x;), this time conditioning the density

on &(x.-) and D, we estimate f(mi|x;, D, ¢(x.)) as:

Fmidxi, D, b(x:)) = C » f Fmmilxe, ()
F(B(x:)| D, x:) F(#(:)| (s ), x: )db(x:) (9)
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where C is a normalization term, constant with respect to x;.
In other words, the two density estimates of ¢ are multiplied
together and normaliged to find their combined prediction. Due
to the availability of very limited number (true in most remote
sensing applications) of ground truth points, which make it very
difficult to use standard Gaussian kernel density estimation {of-
ten called mixtures of Gaussian) [13] to create an accurate den-
sity estimate f(4(x:)|D,x;), we use Expanding Gaussian Ker-
nel (EGK) density estimation, shown in [5, 7], to have superior
performance to standard Gaussian kernel density estimation as
measured by the Kullback-Leibler criterion.

3. PERFORMANCE EVALUATION ON A
SYNTHETIC INVERSE REMOTE SENSING
PROBLEM

We now compare the performance of the different methods of
inverse remote sensing parameter mapping to Bayesian Itera-
tive Inversion. In particular, we compare the performance of an
explicit inverse, iterative inversion of a trained forward model,
and Bayesian Iterative Inversion, with and without ground
truth information. We use the results of [5, 7] to incorporate
model ground truth information into Bayesian Iterative Inver-
sion, showing that a limited number of ground truth points can
significantly enhance performance.

3.1. Definition of the Parameter Mapping and Under-
lying Functions

The Bayesian framework for inverse parameter mapping is fairly
complete, and therefore requires special attention to detail
when constructing the simulation environment. The design of
the problem proceeds as follows. First, we define the original
parameter mappings of X over a set of locations p. Figure3(a)
shows the contours, plotted over their 2-D positions p = [p1, p2],
for a three-dim parameter vector x = [z1, z2, Z3).

The contours chosen are fairly simple, although by design
they afford ample opportunity to become trapped in local min-
ima if a search process begins too far from the true parameter
X.
Next, an approximate model $() is created as m = ¢(x) =
[m1 f m;]:

0.3(z1 + z2) + 0.323 + 0.15 4 ny, (10)
ma = 0.8(zy—23)* + 0.3+ na. (11)

m, =

The measurement noise distributions n; and n; were chosen
as independent Gaussian noise of standard deviation 0.02, thus
defining X, as a diagonal covariance matrix with values of 0.004
along the diagonal.

Since we thought that approximate models should be simpler
in form than the true physical process ¢(x), we subtracted a

model mismatch term e = [e1, €3] from m = ¢(x) to construct

$(x), $(x) = §(x) — e(x),

0.08¢=%(®3==2)", (12)
0.09sin(2x () + z2)). (13)

e =

5] =

Y ; was calculated as the sample covariance from a symmetric

set of data matching any e(x) with a supposed negative sample
—e(x). The original e(x) were sampled from the x parameters
used in the true parameter mapping. Similarly, the prior mean
ip and covariance X, and the neighborhood model covariance
Y mm, were also calculated from the values of the true original
parameter map.

Je, as needed in the EGK method, was taken directly from
the definition of ¢(x), setting the appropriate terms of J,
equal to the maximum absolute value of the appropriate partial
derivative of m with respect to x for ¢(x) [5, 7].

20 positions p were selected at random as ”contour ground
truth points”, yielding 20 positions with known x. Matching
these known parameters x with their the corresponding mea-
surements m, yielded 20 "model ground truth points”.

The iterative methods of parameter mapping retrieval require
initial starting points. We use a distance weighted average of
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Table 1. Average Absolute Error for Retrieved Param-
eter Maps

L Method I X1 | X2 l x;j
‘Explicit Inverse 1722 | 1227 | .1367
Initial Points 1063 | .1221 | .0892
Iterative Inversion | .1648 | .1045 | .1509
Bayes w/o GT .1023 | .1138 | .0866
Bayes with GT .0459 | .0508 | .0575

the contour ground truth points [3] to start the different itera-
tive methods. To isolate the effect of incorporation of ground
truth, no ground truth points are used during the initial iter-
ative convergence of Bayesian Iterative Inversion. Eliminating
the ground truth during convergence keeps them from affecting
the final result through the neighborhood distribution or the
sensor noise and model mismatch distribution. Since Bayesian
Iterative Inversion with a small amount of model ground truth
is effectively a perturbation on the results without using ground
truth, we use the parameter map retrieved by Bayesian Itera-
tive Inversion without ground truth as the initial starting point
when using Bayesian Iterative Inversion with model ground
truth.

2000 (x*, m*) training pairs were created from sampling the

function ¢(x). Two, two-layer MLPs with 40 hidden neu-
rons each, were trained with backpropagation [12] to approxi-
mate ¢ (x) and ¢(x), thus providing the explicit inverse, and
trained forward model used in the iterative techniques, respec-
tively.

3.2. Results of Parameter Map Retrieval

To quantitatively compare all methods, the average absolute
error between the original parameter map and the retrieved
parameter map, for each dimension of the parameter vector x,
was tabulated in Table 1.

To qualitatively compare all the methods, the original pa-
rameter map, and all retrieved parameter maps, are plotted in
Figure 3.

The explicit inverse and iterative inversion managed to pro-
duce poorer performance than the initial gnesses created with
the contour ground truth points. We see that we have indeed
designed the problem to be difficult for the iterative techniques,
although iterative inversion does capture the gross characteris-
tics of the contours, which the explicit inverse fails to do.

Bayesian Iterative Inversion without ground truth is clearly
superior to the previous methods, avoiding their pitfalls, and
enhancing performance over the initial guesses. The real per-
formance improvement comes with the incorporation of ground
truth points, which cuts error rates approximately in half.

4. CONCLUSION

Using Bayesian methodology, we exploit information relevant
to an inverse problem, helping to narrow down the many in
many-to-one inverse problems. Bayesian modeling gains much
of its power from its ability to isolate and incorporate causal
models as conditional probabilities. Remote sensing problems
afford opportunities for inclusion of ground truth information,
prior probabilities, noise distributions, and other informative
constraints within a Bayesian probabilistic framework. The
Bayesian methodology also goes & long way toward solving
some of the outstanding issues with inverse problems in remote
sensing. The many-to-one mapping problem is dealt with by
introducing more informative constraints through probability
distributions. The neural network training can deal with non-
linear relations between parameters and measurements. The
maximization of various conditional probabilities serves as a
smoothing process so that the inversion is stable. Finally,
the addition of ground truth information, naturally included
through Bayesian modeling, provides a significant performance
improvement.
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Figure 3. Plotting x versus p. (a) The original parameter map. The parameter maps retrieved by (b) an Explicit
Inverse (c) Iterative Inversion (d) Bayesian Iterative Inversion (e) Bayesian Iterative Inversion with Ground Truth
Incorporation.
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