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Abstract

This paper is theoretical. We present sufficient and
“almost” necessary conditions for learning compatibil-
ity coefficients in relazation labeling whose satisfac-
tion will guarantee each desired sample labeling to be-
come consistent and each ambiguous or erroneous in-
put sample labeling to be attracted to the corresponding
desired sample labeling. The derived learning condi-
tions are parallel and local information based. In fact,
they are organized as linear inequalities in unit wise
and thus the perceptron like algorithms can be used to
solve them efficiently with finite convergence.

1 Introduction
Relaxation labeling processes represent a class of
mechanisms originally developed to resolve ambigui-
ties in vision systems, and to correct errors arising in
low level image processing. Since its launch [1], the
relaxation labeling has found far broader applications
and many algorithms have been proposed. Conceptu-
ally, those algorithms are parallel offering an appealing
qualitative match with the distributed appearance of
neural machinery in the early human vision system.
It has been discovered over the years that relax-
ation labeling provides a philosophically different ro-
bust method for Computer Vision by its cooperative
use of context. As is well known, conventional robust
statistical techniques assume sample independence.
Recently, a theoretical connection between relax-
ation labeling and associative memory models has
been explored [2] that reveals relaxation labeling mod-
els also represent a biological model for memory, more
general and powerful than Hopfield associative mem-
ory [3] and the like. By analogy to a healthy human
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memory, both recalling and learning processes in re-
laxation labeling models must be made of finite con-
vergence. This justifies the simplex-like updating or
recalling rule [4], which caused skepticism when pro-
posed because of its finite convergence. This further
motivates development of learning algorithms of finite
convergence for relaxation labeling processes.

Over decades, a number of studies have been con-
ducted in an attempt to understand compatibilities
and to develop methods to derive them {1, 5-13]. Some
already addressed the difficult issue of learning com-
patibility coefficients in terms of given sample label-
ings [10, 13]. Nevertheless, the proposed learning algo-
rithms were not local information based, nor of finite
convergence. In the paper, we develop new sample
learning algorithms which are parallel, use only local
information, and offer a finite convergence. In brief,
they learn the condition which not only ensures con-
sistency of each sample labeling, but also enforces an
ambiguous or erroneous labeling being recalled or at-
tracted to a desired sample labeling. Using only lo-
cal information for learning provides further impor-
tant evidence for the relaxation labeling processes to
have biological plausibility.

The paper is theoretical and organized as follows.
In Section 2, we briefly review the RH Z relaxation la-
beling formulation [1, 14] and the simplex-like labeling
updating rule [4]. In Section 3, we slightly modify the
simplex-like labeling updating rule from simultaneous
updatings to sequential updatings, and develop the
Attraction Theorem which establishes the conditions
under which the ambiguity reduction or error correc-
tion on an input labeling can be accomplished in a sin-
gle recalling cycle. In the final section, we present the
Sample Learning Algorithms which are parallel and lo-
cal information based providing the demanded finite
convergence.
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2 RHZ Relaxation Labeling

Formulation

A consistent labeling problem has many units,
each of which has an unknown label. There are n
units, Us,...,U,, and m labels, Li,...,L,. Each
U; will be assigned a labeling distribution p(i) =
(p1(3), ..., pm(3))T which is restricted to lie on a
(m-1)-D simplex Kp,—1 in Ry, ie., pj({) > 0 and
Z;’;l pj(¢) = 1. As is seen, the labeling distribution
p(2) actually ranks likelihood of unit U; possessing dif-
ferent labels.

There are consistency constraints between label as-
signments. Let a real number r(z, j; h, k) (i £ h) called
by a compatibility coefficient represent how label Ly
at unit Uy influences label L; at unit U;. If unit U;
having label L; is highly compatible with unit U hav-
ing label Ly, then the coefficient r(3, j; h, k) should be
large and positive. If the constraints are such that
unit U, having label Lp means that unit U; having
label L; is highly unlikely, then r(i, j; h, k) should be
small. Thus, for fixed i, h,7 # h, the m x m matrix
Rip, = (r(4,]; h, k)) collectively represents the overall
compaitibility of unit U; with unit Up.

Denote the n labeling distributions as a whole by
a labeling assignment matrix, i.e., an m x n matrix
p = [p(1),...,p(n)]. For brevity, we simply call p a la-
beling. Then, the compatibility of unit U; having label
L; with the rest n-1 labeling distributions p(h), h # 1,
is measured by

gi(ilp) = D > r(i, 3 b, K)pr(h). (1)

h#i k=1

Let q(ilp) = (q1(i|p), - - -, gm(ilp))T. Then, the m-D
compatibility vector g(i|p) is linear and homogeneous
in R;p, h # i and ranks the compatibilities of U; having
different labels with the rest n-1 labeling distributions
p(h),h # i. The above formulation follows in spirit
the Rosenfeld, Hummel, and Zucker(RH Z) relaxation
labeling model [1].

In a fundamental work by Hummel and Zucker {14],
a labeling distribution p(é) is defined as consistent if
it is most compatible with the rest n-1 labeling distri-
butions p(h),h # ¢, i.e.,

p(i) = arg mazy(iyek .-, (4(ilp), v()). (2)

In other words, a consistent labeling distribution p(7)
attains the maximum correlation with the compatibil-
ity vector g(i|p). A labeling p is defined as consistent if
each individual labeling distribution p(%) is consistent.

Let M(i|p) represent a set of labeling distributions
at umt U; each of which is most compatible with the

Copyright 1997 IEEE

rest n-1 labeling distributions p(h), h #1, i.e.,

{v(@) - (a(ilp), v())
max  (¢(ilp),v'(i)}.  (3)

v()EKm_1

M(ilp)

Then, we showed the maximum labeling distribution
set M(i|p) is a linear convex set in K,,—1 and can
be calculated by M(ilp) = {v(?) : (q(i|p),v(?)) =
maz; qj(i|p)}. Using the maximum labeling distribu-
tion set, the consistency condition for p(i) can be de-
scribed as p(i) € M(i|p). The definition of consistency
by Hummel and Zucker [14] is somehow different from
the original Rosenfeld et al.’s [1]. We characterized
that p is consistent in Hummel and Zucker’s sense if,
and only if, Yp; (i) # 0 ¢;(ilp) = maz, qx(ilp) and
that p is consistent in Rosenfeld et al.’s if, and only
if, Vp;(i) # 0 the corresponding ¢;(i|p)’s are equal.
Based upon the two characterizations, it was shown
that a consistent labeling in Hummel and Zucker’s
sense is a consistent labeling in Rosenfeld et al.’s. But
the reverse may often not be true [4]. For instance,
every unambiguous labeling is consistent in Rosen-
feld et al.’s sense by the second characterization, a
truth that can be directly verified by noticing an un-
ambiguous labeling is a fixed point of Rosenfeld et
al.’s labeling updating rule. But unambiguity does
not warrant consistency in Hummel and Zucker’s. An-
other interesting phenomenon with Rosenfeld et al.’s
relaxation labeling is anytime when a labeling distri-
bution component p;(¢) becomes silent, i.e., p;j(¢) = 0,
it will never speak out again, a fact that can be eas-
ily checked by using Rosenfeld et al.’s updating rule.
This indicates that a true desired labeling will not be
perfectly recovered from an ambiguous or erroneous
labeling through Rosenfeld et al.’s relaxation labeling
if the latter has one labeling distribution component
which is improperly set to silence. It appears that
Hummel and Zucker’s relaxation labeling represents
significant progress, even though the new one admits
no algebraic updating rules as neat as Rosenfeld et
al.’s.

A labeling distribution p(i) is defined as strictly
consistent if p(i) is a unique point in K,_; which
is most compatible with ¢(i|p}. A strictly consistent
labeling distribution must be a vertex of Kp_; and
hence unambiguous [14]. But the reverse may not be
true. Similarly, labeling p is defined as strictly con-
sistent if each individual labeling distribution p(7) is
strictly consistent.

Let p® be the current labeling which has not been
consistent yet. Then the relaxation labeling processes
shall choose the next labeling p**! to enhance labeling
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consistency. Let M (i|p®) represent the maximum la-
beling distribution set decided by labeling p® for unit
U;. We argued {4] that the following dynamic system
improves the labeling consistency:

Vi, p*t1(5) = arg min,iyemirpe) || (1) = p°(9) || - (4)
As is seen, p*t1(i) represents an orthogonal projection
of p*(i) onto M(i|p*) which is uniquely determined.
We proved a consistent labeling is a fixed point of the
dynamic system and vice versa, and showed that a
convergent labeling updating sequence {p*} provides a
consistent labeling at the limit and a strictly consistent
labeling is an attractor. Finally, we substantiated the
dynamic system by the simplex-like labeling updating
rule which is parallel and of finite convergence.

For the reader’s convenience, we describe the
simplex-like labeling updating rule as follows.

The Simplex-Like Labeling Updating Rule:

Since M(i|p) is a linear convex set, it can be easily
constructed through its vertices which are each a stan-
dard unit basis vector in R,,. Let I(i|p) denote the
set of indices of aforementioned basis vectors. Then

I(ilp) = {k: qx(ilp) = m]aqu'(ilp)}- (5)

If p represents an arbitrary input labeling of the dy-
namic system (4) and p’ the corresponding output la-
beling, then p’ can be calculated as follows:

L (m+ Y mel)/#IGl), i € IGlp)
p; (2) = kgI(ilp)
0, otherwise

(6)

forj=1,---,mandi=1,.---,n.

3 Quantitative Attraction The-

orem
The Modified Simplex-Like Labeling Updat-
ing Rule:
In the modified updating rule, an input labeling p
experiences a series of updatings during a so-called
recalling cycle to produce an output labeling p/, i.e.,

—p™ =p. (7)

As is seen, the sequential updatings are used in (7) to
replace the simultaneous updatings in (4).

The updating from p*=1 to p(¥) can be formally
described as follows.

p®(i) = p*-D(i), 1 < i<k,

p=p® p ..

p®(k) = argmin, e pcrlpe-mllv(k) —p(k)ll,  (8)

PO =p(i), k<i<n
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The formula (6) can be used to substantiate the op-
eration argmin in (8). Since the output labeling p’ is
defined by pt*), it is apparent that p'(k) = p*)(k), k =
1,2,...,n.

The updating rule by (7)-(8) defines a modified dy-
namic system. It can be easily shown that a consis-
tent labeling is a fixed point of this modified dynamic
system, i.e., p = p/, and vice versa. Moreover, the
condition for an input labeling p to be attracted to a
desired labeling p in a single recalling cycle is identified
as p’ = p and can be derived in detail as

p (k) = k), k=1,2,...,n 9)

due to p/(k) = p¥)(k), k = 1,2,...,n. This attraction
condition is significant in that it clarifies the condition
which is needed in learning compatibility coeflicients.

Let pgk) denote a labeling which is a genetic
“crossover” of the input labeling p by the desired la-

beling p, i.e.,

PO =50), 1<i<k (10)
P =pli), k<i<n

where 0 < k < n. As is easily verified, pﬁ") = p and

p™ = p. In terms of (10) and those n + 1 crossovers,

the attraction condition (9) can be transformed into

the following equivalent condition:

pBk) = pB(k), k=1,2,.. n (11)

Theorem (Atiraction) The input labeling p will
be attracted to the desired labeling 7 in one recalling
cycle if the following n maximum conditions hold

(ki) (k) > g5 (k[pEFD),
i=12,...,n, if p(k)=p(k)
(k) = somee; and

g; (k1p 1) > g (k[pF D),
Vi #34, if (k) # p(k),
k=12,...n.

(12)

Remark: Tt can be easily verified that those maxi-
mum conditions are also necessary to warrant attrac-
tion.

4 Sample Learning Algorithm
Assume a set of observation sequences OV, v =
1,2,...V, of the problem we intend to solve are avail-
able, where O” = (of,...,0}) and o} represents an
observation at unit U;. Moreover, assume for each
observation sequence O” there is a valid unambiguous
labeling p* being correctly identified prior to train-
ing. Since the relaxation labeling processes are devel-
oped to dissect ambiguities and rectify errors caused
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by some well-defined procedures used in preprocessing,
it is thus important to include those flawed labelings
during training as well. Suppose for each observation
sequence OV there is a so-produced ambiguous or er-
roneous labeling p¥. Our task is to learn the compat-
ibility coefficients so that each valid sample labeling
7* will be consistent and each erroneous sample label-
ing p” will be driven to the corresponding true sample
labeling * in one recalling cycle by the modified dy-
namic system.

Let $¥(¢), which is assumed unambiguous, be rep-
resented by a unit basis vector e;(,,). Then the con-
sistency for p” and the attraction for (p*, ") require
that at each umt U; there hold

%i)(elp”) 2 ¢; (2lp”), Vi #i(v) (13)

and

qi(u)(ilp?(i’l)) > gj(ilpfé(‘:l)), ‘

Vi # i(v), if p¥(3) = p*(3),
o v(i— 4o v(i— (14)
o)) > g,

Vi #i(v), if (i) # p* ().

Theorem (Sample Learning) At each unit U, if
the compatibility matrices R;p, b # %, can be learned
so that the so-called quantitative attraction condition
1s satisfied, 1.e.,

2 (E8”) > ¢;(3]p”),
i (ilptCY) > @), (19)
v=12---,V and j £ i(v),

then those unambiguous sample labelings 5* will each
be consistent, and each ambiguous or erroneous la-
beling p” will be attracted to the corresponding true
sample labeling p*.

Remark: The theorem presents sufficient and “al-
most” necessary conditions of learning compatibility
coefficients in relaxation labeling for multiple sample
labelings’ consistency/attraction and lets the whole
learning processes be decomposed into n independent,
parallel learning processes, one at a unit. Indepen-
dence of learning at U; from learning at Uy, h # ¢, in-
dicates that they are local-information-based. There
are a total of 2V x (m—1) linear inequalities involved in
(15). The general solution of (15) forms a cone of high
dimension which can be obtained by using the TZW
algorithm [15]. A specific solution can be obtained
by using Rosenblatt’s perception rule or Ho-Kashyap
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algorithm [16]. All three algorithms are of finite con-
vergence. Existence of a cone for the general solution
explains relative-immunity of relaxation labeling oper-
ations to a large variation in compatibility coefficients
and solves the mystery why some heuristic methods
provide workable compatibility coefficients in certain
applications.
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