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ABSTRACT

This paper deals with the construction and optimization of a

hybrid speech recognition system that consists of a combin-
ation of a neural vector quantizer (VQ) and discrete HMM:s.
In our investigations an integration of VQ based classifica-
tion in the continuous classifier framework is given and some
constraints are derived that must hold for the pdfs in the
discrete pattern classifier context. Furthermore it is shown
that for ML training of the whole system the VQ paramet-
ers must be estimated according to the MMI criterion. A
novel training method based on gradient search for Neural
Networks that serve as optimal VQ is derived. This allows
faster training of arbitrary network topologies compared to
the traditional MMI-NN training. An integration of mul-
tilayer MMI-NNs as VQ in the hybrid discrete HMM based
speech recognizer leads to a large improvement compared
to other supervised and unsupervised single layer VQ sys-
tems. For the speaker independent Resource Management
database the constructed hybrid MMI-connectionist/HMM
system achieves recognition rates that are comparable to
traditional sophisticated continuous pdf HMM systems.

1. INTRODUCTION

In former work (see [5]) it has been shown, that hybrid
speech recognition systems which use Neural Networks
(NN) as labelers combined with discrete output Hidden
Markov Models (HMM) compare well to other complex sys-
tems. These hybrid systems use a special purpose kind of
Neural Network that is trained on the maximum mutual
information (MMI) objective function and serves as a vec-
tor quantizer (VQ) for the HMMSs. So the network output
labels (called M) provide as much information about the
phonetic classes (called W) as possible. In particular the
MMI-NN/HMM hybrid has shown nearly similar recogni-
tion rates as other State-of-the-Art multi-mixture continu-
ous density systems for the Resource Management (RM)
speaker independent continuous speech recognition task [5].

However, there were several drawbacks in hybrid system
training: Although it is well known that the usage of hid-
den units can improve the performance of NNs in general
(see e.g. [2]), the system described in [5] did not have any
hidden nodes. This is mainly due to the facts that is has
turned out: i) it is nearly impossible to train a muitilayer
MMI-Network in reasonable time on standard hardware, ii)
the current training technique just allows a very specific net-
work topology that was used in [3]. In contrast to usual NN
training, that is commonly based on gradient search, the
traditional MMI-NN training scheme (see e.g [5]) is a blind
weight change by trail-and-error. The training algorithm
steps through the network weights and changes each of them
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by a fixed offset. If this change leads to an increase of the

objective function (i.e. I(M,W)), the change is accepted,
otherwise it is discarded. This causes a lot of unnecessary
and time consuming weight changes and entropy calcula-
tions that grow the larger the networks are. Furthermore
the type of network output layer was restricted to some
kind of LVQ-like activation function that locks for the min-
imum Euclidean distance between the network weights and
the input vector.

Hence a novel training algorithm had to be developed
based on gradient descent, that improves training time and
allows arbitrary kinds of NN topologies as shown in this pa-
per. The main problem with gradient methods here is, that
it is difficult to calculate finite but non-zero derivatives of
the maximum/minimum search needed at the output nodes
of a Winner-Takes-All Network (as used in VQs and the
MMI-NN). So a soft and differentiable decision function is
used at the output nodes of the new proposed NNs. This
leads to a novel NN training algorithm that does not need
target values for the output nodes (unlike other supervised
training methods of NNs), while all well known accelera-
tion methods (like Quickprop or second order methods) for
weight update of classification networks can be applied. In
addition any kind of network topology (with hidden nodes)
can be trained now and even if the feature extraction mod-
ule is added as a first layer to the NN, the parameters of the
feature extraction can be optimized simultaneously.

In the following, at first a theoretical integration of dis-
crete models in the statistical pattern recognition (using con-
tinuous models) framework is given, and it is shown how
VQ parameters have to be estimated for different classifier
system training paradigms. Then we show how a gradient
based optimal NN training algorithm can be derived using
these foundations. And finally some experimental results for
the RM database obtained with multilayer MMI-NN systems
trained by the novel algorithm are given.

2. OPTIMAL PARAMETER ESTIMATION
FOR DISCRETE PATTERN CLASSIFIERS

In statistical pattern recognition, likelihood based model-
ling of class dependent probability density functions (pdf)
p(x)w) is very common for classifier design. Here x denotes
a (continuous) feature vector and w denotes a pattern class
(e.g. a phoneme or an HMM state in speech recognition). A
bayes classifier also needs a-priori information P(w) = P,
about these classes that does not depend on the observation
x (in the following the P, are assumed fixed). A very gen-
eral choice for p(x|w) is a mixture of J,, different parametric
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continuous basic pdfs p(x|m;,w) (e.g. Gaussians):

poxiu) = S polxlmy,u)- Polmglw) (1)

I=1

In speech recognition this is called a continuous model with
Ps(m;{w) as the mixture weights. 8 denotes the set of sys-
tem parameters that are estimated during training. Shar-
ing of the basic densities among all different pattern classes
leads to the semi-continuous (tied-mizture) models:

po(xlw) = Y po(x|m;) - Po(m;|w) (2)

j=1

It must be noted, that in both cases above the class-
independent pdf pe(x) is automatically also determined
when model assumptions about the pg(x|m;,..) are made
(since po(x) = 3 pe(x|w) - P,). Hence if po(x|m;,..) is a
Gaussian, pe(x) is a mixture of Gaussians.

In discrete modelling the continuous feature space is sub-
divided by a VQ into J different regions (partitions) asso-
ciated with the discrete labels m; (1 < j < J); the VQ
parameters (e.g. centroids, NN weights) are contained in
the parameter set §. The label of the actual VQ region the
current feature vector x is in, is called g(x) € {m1,..,m,}.

The likelihood pdf of the discrete model can be derived from
eqn. (2) by using pe(x|m;) = —lmpj%i-ﬁ—(”. Here Po(m;|x)
is the probability of x being in the j-th VQ partition, that
is given by ijyﬁ,a(x) in the non-fuzzy-VQ case, and thus
the continuous pdf associated with the j-th VQ partition is
given by:

pe(x|m;) = { FI;Z%ZT if m; = rhe(x) @)

else

In this case any class independent pdf pe(x) that holds the
condition:

Ps(my) =/ .y )pe(x) dx Vije{1,.,J} 4)

(to make eqn. (3) become a real pdf) can be chosen. Hence
in opposite to the (semi-)continuous models, the assump-
tions made about FPg(m;|x) in the VQ model case do not
directly determine the form of the class independent pdf.
Using eqn. (3) and eqn. (2), the class dependent continuous
pdf for the discrete model case is given by:

LO(L. me(x)}w
Pe(ﬁl.s(x)) Pe( ()‘ ) (5)

From eqn. (5) follows that in the VQ case the modelled
class dependent pdf pe(x|w) is piecewise proportional to the
class independent pdf ps(x) for all different classes w with
%%%l as weighting factor. This is a constraint that
may himit the modelling power of discrete models. On the

other hand, since P—:’(é%” in eqn. (5) does not depend on w

po(xlw) =

(i-e. it is equal for all different classes), during classification
(when the P, - pg(x|w) are compared) it can be omitted in
the calculation of the pe(x|w). Thus the recognition system
actually does not need information about the assumed class
independent pdf pg(x).
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For classifier training the pattern samples may be used
to learn the parameters of the whole discrete system, i.e. as
well the discrete bayes classifier as the VQ. It is assumed
that there are N feature vector samples x(n) (1 < n < N)
for training; the VQ partition, the n-th sample is in, is called
m(n) = m(x(n)). There are K different pattern classes
wg 21 < k < K); the class of the n-th pattern sample is
denoted w(n). A theoretically optimal training criterion
(that is discriminative by nature) is the maximization of the
a-posteriori class probabilities for all samples; in the discrete
model case this yields (using eqn. (5)):

pegx(n)lw(n)) - Py(n)
n=1 Zf:l pe(x(n)|wk) : Pwk
argmax _ Po(mne(n)|w(n))
go H Zf=l Pg('r’he(n)lu)k) . Pwk

n=1

(6)

Odiscrim = argmax
2]

(7)

As shown in [2] the widely used maximum likelihood (ML)
estimation can be derived from eqn. (6) under the assump-
tion that the class independent pdf in the denominator of
eqn. (6) is not affected by training (i.e. po(x) = p(x)).
In general this assumption is not valid and for the discrete
model case condition (4) may be violated. For the discrete
system the ML estimation using eqn. (5) is given by:

N
O = arggnax Hpe(x(n)|w(n)) - Py(n (8)
i Po(he(n)|w(n))
= argmax 1:[1 _——(Po(f%e(ln)() 9)

If the fixed a-priori probability P, matches P{ws) of the
training samples, both estimates 8s. and 84is¢rim are equal
for the discrete classifier.

By eqn. (9) and eqn. (7) two rules for designing an optimal
VQ in different training frameworks are given. To allow
a simple interpretation, eqn. (9) can by transformed into:
argmaxe(H(Me) — H(Mo|W)). This is the maximization
of the mutual information I(W; Ms) between the stream of

pattern classes W and the stream of labels Mo produced by
the VQ.

3. TRAINING OF MMI NEURAL NETWORKS
As shown above, the parameters 6 of a VQ, used in a clas-
sification system t{ained by ML, have to be estimated by
maximizing /(W; Mg). This conclusion was also drawn by
the authors of [4] and [5]. Since the mutual information can
be rewritten as H(W) — H(W|Ms), VQ parameter optimiz-
ation can be done by finding: argmaxg (—H(W|M9)) =

Po(wk, m,)

K
argmax | 33 Po(un ;) log i | (10)
k=t =1 > Po(wy, 1hy)
r=1

with the derivative o(-H(W|i)) = log Po(wilri;).

8Py (w;,m)
In the following, for vector quantization a Winner-Takes-
All NN is utilized; the NN uses the feature vector x as input
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and has J different output nodes with output activations
called f;(x) (1 < j < J). The parameters & are associated
with the network weights, that will be estimated by a gradi-
ent descent approach according to the MMI objective func-
tion. This NN training principle will be called the MMI-NN
paradigm. During recognition the network determines the
VQ partition label 1(x) = m; by j = argmax; f;(x). Dur-
ing the network training, the maximum operation is replaced
by a soft approximation, due to the need of finite derivat-
ives. So we use the Softmax function (with a quite small
choice for the softness parameter T' to be not too smooth)
defined in [6] by:

i (x)
L)
e
0;(%) = — 7y (11)
gL
Zi:l €
With the derivative 224%) = +-01(x)-(81,; — 05(x)). Since

9 fi(x)
in our (sharp) case the Softmax output is nearly 1 for the
maximum network output and zero for the other ones, it can
be used to approximate the probabilities needed in eqn. (10)
by averaging over the training samples. That yields:

N
Poluwk, ) % 35D bupuiy - Oy(x(m))  (12)

n=1

So the gradient of eqn. (10) with respect to the NN weights
8 can be written using the chain rule and the derivatives
given above by:

d(—H(W|M)) O(=HW|M)) {~oP(w, ;)
o9 = ;; OP(wk, mj) Z 00;(x(n))
90;(x(n)) 8fi(x(n))
2 Bhi(x(m) o8 (13)
N J
=Z;ﬁ%ﬂwmm (14)
With:

Ax) ~ Ofx(n)-> _log Plwkn,)- 61, — Ox(n)) (15)

Jj=1

In eqn. (14) M just depends on the structure of the
NN. In pr]nc1ple any kind of NN topclogy can be used as
MMI-Net (e.g. MLP, RBF, Kohonen Maps, etc.).

This novel MMI-Net paradigm differs from usual neural
classification and probability estimating networks in several
points: in the MMI-Net the number of output nodes J can
be chosen arbitrarily and may be larger and (theoretically)
even smaller than the number of pattern classes K. Fur-
thermore there are no output target values presented to the
network during training. Instead of this the network finds
the optimal outputs in a self-organizing way by considering
all training patterns simultaneously.

On the other hand there are some interesting relations to
classical NN training algorithms: Considering a classifica-
tion NN with K" = J output nodes and the Softmax output
nonlinearity that is trained on some objective function called
E (e.g. squared error criterion, cross entropy, etc. ). It
turns out that its gradient is also calculated by eqn. (14; and
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Figure 1. General structure of MMI-NN trained as
optimal VQ
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squared error minimization case this is O;(x(n)) — O;(n),
with the target value at the j-output node for the n-th pat-
tern denoted O;(n). Hence both training algorithms are
quite similar and the same acceleration methods (i.e. hard-
ware as well as software) can be applied.

4. EXPERIMENTS AND RESULTS

To investigate the behavior of the novel training method,
several kinds of MMI-Nets are trained, and used as VQ
in a discrete HMM speech recognition system. NN weight
update is done by a method similar to the off-line RProp
training (see [7]). For training we use the 3990 speaker
independent sentences of the RM database. In the first ex-
periments we extract 12 MFCC features every 10 ms, res-
ulting in ca. 1.3 million training patterns. No power and
delta-features are used in these experiments. To determine
the pattern classes w(n), corresponding to the feature vec-
tor frames, the database is Viterbi-aligned using a method
as described in [5]. Two kinds of pattern classes are ob-
tained by the alignment: i} monophone HMMs, ii) states of
monophone HMMs.

At first a Euclidean distance NN, as used in [5], is trained
using the new algorithm. It turns out that after 50 RProp
iterations the objective function reaches similar values as
obtained in [5] with the former training method. In terms
of training time, that is a more than two times acceleration
compared to the traditional MMI-NN training algorithm.
In practice it turns out that the softness parameter T in
the Softmax output must be chosen very small to achieve a
fast training convergence. The recognition results of both
systems were quite the same.

To compare the recognition performance of the NNs in the
discrete HMM framework we use the official Feb’89, Oct’89,
Feb’91 and Sep’92 DARPA RM SI test sets. The used mod-
els are discrete monophone HMMs for the MFCCs. Recog-
nition is done via a beam search guided Viterbi decoder
using the DARPA word pair grammar (perplexity: ca. 60).
In tab. 1 the obtained results are glven as the average re-
cognition rate for the four RM test sets in the form: correct
(accuracy). Tab. 1 also shows the number of input nodes,
number of hidden nodes and the kind of pattern class wyg
that is used in MMI-NN training. The output layer size is
fixed to 200 and the input layer size varies with the num-
ber of adjacent MFCC frames that are used as NN input
to capture larger context. The first two rows in tab. 1 are
baseline results obtained with k-means and the former train-
ing algorithm using the Euclidean distance NN type as used
in [5]. The other results demonstrate the capabilities of the

is used instead of log P(w(n)|7;). In the
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[ VQitype [ #iop. [ #hid. T wir [ Corr. (Acc) |

Test set [ MMI-NN/HMM | K-means system

Table 1. Comparison of RM recognition rates of
monophone HMMs with MFCC features using dif-
ferent MMI-NN topologies

novel training method with single-layer perceptrons (SLP)
NN and two-layer perceptrons (MLP). It can be seen that
the gradient based MMI-Net paradigm in conjunction with
NNs that use hidden nodes leads to superior recognition
rates compared to the former methods.

Finally the new kind of multi layer MMI-Net is integ-
rated in the 'large’ speech recognition system that was used
in [5]. This system extracts 39 features consisting of 12
MFCCs, LogEnergy, plus the first and second derivatives,
every 10 ms. All in all four different MMI-NNs are used as
multi codebook VQ: the MLP with 3 adjacent input frames
for the MFCCs as described above; 3 Euclidean distance
NNs as described in [5] for the first and second MFCC-
derivatives and the power with its derivatives. The output
layer size of each NN is 200. The system uses 2309 context
dependent HMMs to model word internal triphones and the
33 most frequent function words. All MMI-NNs are trained
on the whole speaker independent part of the RM database
as well as all HMMs using the forward-backward-algorithm
(i.e. ML training). To overcome some problems due to in-
sufficient training data the discrete pdfs are smoothed and
the HMM states are tied. Tying is performed via a phonet-
ically based decision tree that assigns the triphone states
to several equivalence classes according to similar phon-
etic context and similar discrete pdfs. This enables us to
generate unseen triphone states that may be used in future
systems with larger vocabulary and/or cross word context
HMMs.

The recognition results for this hybrid MMI-NN/HMM
system are given in tab. 2 for all four used RM test sets. As
a comparison the recognition results of a classical discrete
k-means system are also given that uses the same kind of
detailed triphone HMMs. So these two systems are quite
similar, the only difference is the usage of MMI-NNs as VQ
in the hybrid system case in contrast to the k-means code-
books in the other case. As tab. 2 clearly shows, on the
average the hybrid systems outperforms the classical one by
more than 2% (absolute). This result also compares very
well to other complex systems that were tested on the RM
task. In {8} another hybrid NN/HMM is described that uses
simple monophone HMMs and a recurrent NN to estimate
local phone posterior probabilities. This system achieves
an average recognition result of 94,3% (93,4%) for the RM
test sets using context independent HMMs. Results for a
multi Gaussian mixture continuous pdf system are reported
e.g. in [9]. The system uses word internal state-clustered
triphone HMMs (similar to the MMI-NN hybrid system de-
scribed here) and achieves average RM recognition results
of 95,4% (94,7%) what is equal to the recognition rate given
in tab. 2.

5. CONCLUSIONS

The paper gives an integration of VQ based discrete pat-
tern classifiers into a continuous pdf modelling framework
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K-means 12 0 - 71,2% (70,3% Feb’89 96,3% (95,6%) 94,3% (93,6%)
cucl, NN | 12 0 HMM |[ 76,0% (74,5% Oct’80 || 95,4% (94,5%) | 93,5% (92,0:?%
SLP 2 0 OMM || 74,7% Feb’91 96,7% (95,9%) 94,4% (93,5%
MLP 12 12| AMM || 76,9% | Sep’92 93,9% (92,5%) | 90,7% (88,5%)
MLP 36 36 HMM [ 80,2% [Caverage || 95,6% (94,6%) | 93,2% (92,0%)
MLP 36 36 states || 80,9% (79,77%
MLP 60 60 states || 83,3% (82,0%) Table 2. Comparison of RM SI recognition rates

(Corr. (Acc.)) between context dependent hybrid
MMI-NN/HMM and baseline k-means system

and it is shown that for optimal ML training of discrete
classifiers, the VQ parameters have to be estimated accord-
ing to the MMI objective function. A novel gradient based
MMI training method is proposed for optimal neural net-
work learning as a VQ in a discrete HMM framework. This
training method is faster than a traditional MMI-NN weight
optimization procedure and allows training of arbitrary hid-
den NN layers. Using these MMI-NNs leads to a hybrid
speech recognition system that performs equal or even bet-
ter than other high sophisticated continuous pdf and hybrid
HMM systems. Future improvements may be obtained by
training of more complex NN types (e.g. recurrent nets) and
application of techniques to improve generalization as well
as the integration of context dependent HMMs that allow
cross-word modelling of speech.
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