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ABSTRACT

In this paper. a “stop-and-go™ decision-directed blind equaliza-
tion scheme is newly proposed. This scheme uses the structure of
complex-valued multilayer feedforward neural networks, instead
of the linear transversal filters that are usually used in conven-
tional LMS-typc blind equalization schemes. A complex-valued
activation function composed of two real functions is used. Each
real activation function has multi-saturated output region in order
to deal with QAM signals of any constellation sizes. Also, the
complex backpropagation algorithm is modified for the proposed
scheme. Computer simulations are performed to compare the
proposed scheme with the conventional “stop-and-go” algorithm
in terms of convergence speed, MSE value in the steady state,
and constellation of QAM signals after the initial convergence.
Simulation results demonstrate the effectiveness of the proposed

scheme.

1. INTRODUCTION

For blind equalization. many algorithms have been developed.
Among useful blind equalization algorithms, there are stochastic-
eradient iterative equalization schemes, called LMS-type blind
equalization schemes, such as the Sato algorithm [1], the Godard
algorithm [2], the “Stop-and-Go” algorithm [3], and so on. These
algorithms are based on LMS adaptation, and apply a memo-
rviess nontinearity in the output of a linear FIR equalization filter
for the purpose of generating the “desired response”. as shown in
Fig. 1. The cost functions of these algorithms are nonconvex
functions of the tap weights because of the fact that the estimate,
performing the role of an internally generated “desired response”,
is produced by passing the linear combiner output Op, through a
7ero-memory nonlinearity. and also because Oy, is itself a linear
function of the tap weights. However, a linear FIR filter structure
is nol competent to optimize nonconvex functions because the
decision regions for a linear machine are convex. Furthermore, if
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nonlinear channel distortion is too severe to ignore. these LMS-
type blind algorithms suffer from a severe performance degrada-
tion because a linear filter with a FIR or lattice structure can only
deal with linear channel distortion well. Therefore. a blind
equalization scheme using a nonlinear structure has become
necessary. On the other hand, Multilayer feedforward neural
networks provide a powerful device for approximating a nonlin-
ear input-output mapping of a general nature. Many studies
showed that multilayer feedforward neural networks can form
convex and nonconvex decision regions because of their nontriv-
ial mapping capabilities {4, 5. 6].

In this paper, a “stop-and-go” decision-directed blind equali-
zation scheme that can deal with QAM signals of any constella-
tion sizes is newly proposed. This scheme uses the structure of
complex-valued multilayer feedforward neural networks, instead
of the linear transversal filters that are usually used in the con-
ventional LMS-type blind equalization schemes aforementioned.
The complex-valued multilayer feedforward neural network
works well with M-ary QAM as an equalizer with a training
sequence and a CMA-type blind equalizer in recent papers {7, 8].
A complex-valued activation function composed of two real
functions is used. Each real activation function has multi-
saturated output region adequate to deal with QAM signals of
any constellation sizes [7, 8]. In addition, the complex back-
propagation algorithm is modified for the proposed scheme.
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Fig.1 Block diagram of conventional blind equalizers
based on LMS adaptation.

2. A COMPLEX ACTIVATION FUNCTION

A complex-valued multilayer perceptron (CMLP) consists of
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Fig.2 A single complex processing element (CPE) with a
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Fig. 3 Input-output characteristic of f(x) = x + asin(ax)

many complex processing elements (CPE) shown in Fig. 2. The
CPF has two real activation functions for the real and the imagi-
nary net values of the node output. The used complex-valued
activation function £ is

F=f )+ () ()

where =/ is the real-valued function, and “R” and “I” refer to
quantitics on the rcal and the imaginary parts, respectively. The
real function /s defined as follows:

(y =y + o sin{r
/(“ Rurl) T Rorl ( Y

) @

Rorl

where « is the slope parameter [7. 8]. As shown in Fig. 3, f has
multi-saturated output region adequate to QAM signals of any
constellation sizes,

3. “STOP-AND-GO” DECISION-DIRECTED
ALGORITHM AND ITS NEURAL VERSION

Let X, be the complex input vector and Op the complex equal-
izer output [see Fig. 1]. The estimated error is s, =(§p -0,

where (3/, is the decided complex symbol. The conventional
“stop-and-go” decision-directed (DD) algorithm is as follows:
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WR(p+I)=W,¢(p)+a(§,,_,¢5,,,e X, x+¢,,9, X,;,/)

3)
W/(p+])zwl(p)“a(gp,ké,;le gp/ i /;/e)
The above algorithm uses the following flags:
é, _ ]’ lf Sgn 6/7‘1" = Sgn gp,k
Mlo. if send, . #send,
4
c 1, if sgnd,, —sgnb
" 0, if sgné,, #sgn 5
where two Sato-like errors
5/’,1( =0pp— (sgn Op g By (3)

5/',/ =0py

- (Sgn Op, )ﬁ/’

are used, with f3,, being a suitable real value possibly changing
with p. sgn(*) is the signum function equal to +/ if the argument
is positive, and -/ if it is negative.

On the other hand, if the complex activation function defined
by Egs. (1) and (2), and the CMLP with one output neuron arc
used, the error terms of the conventional CBP algorithm [7]
become as follows:

5,=D,-0, (©6)
f’”(net/) 13)5[) I +jfm(n€[p I) pd (7)

6;:,-=f"'(net:1,-,,e>(5" W) v in ey awy) o

where W;’ is the weight on the connection from the jth hidden
neuron to the output neuron. In this case, the CBP algorithm may

be split into real and imaginary parts as follows:

/R(p+]) W,R(P)""?( pl{ ]z/l€+6/>1 p/l)

9
W(/}I(p + l) = M) (p) 77( [i R [;/I /’;I ’./)LR)
W;'y (p+D= Wil, (P + 77(5::/ RXpint 5;:/;/ x/yi.l) a0
/l/(p+]) —‘wul(p) 77( piR xpl[ I/;i,l xpi,R)

The “stop-and-go™ DD algorithm (S&G) can be naturally ex-
tended to blind equalization algorithm using the CMLP. The
neural network “stop-and-go™ (NNS&G) algorithm is as follows:

wi(p+ )= W,R(P)‘*’ U(g,»le 5,;1( win TC,1 0, ,,l {y /) an
w’/".l(p+ = W',’)‘I(P) - ﬂ(g,r,/e 5;Je Lyt =S 5;;,/ i,,/_/e)

/I R(p + [) w/l R(p) + 77(4,; R 5[7/ R x/)/ R + é‘pl bp/ / x/;/ I)
W/i,/(P +1) = W,‘;,/(P) - 77(4’,;‘11 5,)“( Xpig 4,;/ 5,11, 7 X pi 1:)
(12)

where Dy, = 0/> and the same flags defined in Eqs. (4. 3) are used.
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4. SIMULATION RESULTS

The performance of the S&G algorithm using the CMLP
(NNS&G) is compared with the conventional S&G algorithm
(S&G) using the lincar FIR filter for 32-QAM signal and 64-
QAM signal. The performance is evaluated by calculating the
mean square error (MSE). The slope parameter « is appropriately
set through many tests. The reference channel has a relatively
flat frequency response. However, its binary eye is closed and
the decision-directed attempt to achieve equalizer training was
failed. The z-transform notation of the channel is

H(z) = (0.0410+j0.0109) + (0.0495+j0.0123)z-1 +
(0.0672+j0.0170) z-2 + (0.0919+j0.0235) z-3 +
(0.7920+j0.1281) z-4 + (0.3960+j0.0871) 3 + (13)
(0.2715+j0.0498) z-6+ (0.2291+j0.0414) 7 +
(0.1287+j0.0154) z-8 + (0.1032+j0.0119) z9

In the sequel, we will use the following table notations.

(k) A linear FIR equalization filter with k tap weights
(N. Ly A CMLP with N input nodes, L hidden neurons
and one output neuron
1% The step-size parameter of a linear FIR filter
n The step-size parameter of a CMLP
|a;. a5}  a;: The slope parameter of the activation function
used for the hidden layer
a The slope parameter of the activation function
used for the output layer
W The reference tap of a linear FIR equalization filter

/

[% W’y is always set to one |

As shown in Fig. 4, as the values «, and «, increase, the
convergence speed becomes slow but MSE in the steady state
decreases. This is due to the fact that the increased nonlinearity
ol the activation function accomplishes more powerful mapping
capabilities. but causes the learning process to be difficult. For
varying the number of input nodes, NNS&G and S&G have
shown the similar trend; that is, as the number of tap-weights
increases. the convergence speed becomes slow but MSE in the
steady state decreases [see Fig. (5)].

The performance comparison between NNS&G and S&G is
shown in Fig. 6. As shown in Fig. 6, NNS&G achieves lower
MSE in the steady state and the more fast convergence speed
than S&G by adjusting the values «, and a, .

Such results were also observed for 32-QAM signal with
B, =5. as shown in Fig. 7. These are due to the facts that the
CMLP has the mapping capability to learn and approximate
arbitrary nonlinear functions, and thus can approximate the in-
verse of the FIR channel more accurately than the linear FIR
filter. The powerful mapping capability of NNS&G is more
casily observed when the constellation of QAM signals after the
initial convergence is plotted. As we can see from Fig. 8. the
symbols are more clearly distinguishable at the output of the
NNS&G equalizer. Of course. we can see intuitively that such a
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Fig. 4 Convergence of MSE versus number of transmitted
symbols for NNS&G (15, 9) with the 64-QAM signal. Pa-
rameters are ,Bp =6, w[h,,%][‘\‘%)vk =1.0.
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Fig.5 Convergence of MSE versus number of transmitted
64-QAM symbols for (a) NNS&G [0.1, 0.3] and (b) S&G.
Parameters are ,Bp =6, w[h,%][\*%]‘k =1.0, w, =1.0.
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Fig. 6 Convergence of MSE versus number of transmitted
64-QAM symbols.
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Fig. 7 Convergence of MSE versus number of transmitted
32-QAM symbols for NNS&G [0.1, 0.3] and S&G.
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Fig. 8 Constellation of 32-and 64-QAM symbols equal-
ized by S&G and NNS&G.
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powertul mapping capability is predominantly generated by the
saturation characteristics of the activation function.

5. CONCLUSIONS

The “stop-and-go™ decision-directed algorithm based on neural
networks (NNS&G) has been proposed for M-ary QAM signal of
any constellation size. For the proposed scheme, the CMLP with
input-memory, being a generalized complex-valued FIR filter,
has been used. The CBP algorithm has been modified for the
proposed scheme.

Simulation results show that the proposed scheme works
well with the 32- and 64-QAM signals as nonlincar blind equal-
izers. NNS&G achicves much lower MSE in the steady state and
more fast convergence speed than S&G for 32-QAM and 64-
QAM. However, like the case of S&G, NNS&G’s weak point is
the initial convergence speed that is relatively slow compared
with other LMS-type blind equalization schemes: nevertheless.
the robustness to environment conditions such as the step-size
parameter and the slope parameters, and the low MSE in the
steady state makes NNS&G attractive in contrast to the conven-
tional LMS-type algorithms.
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